Table of Contents

Zygomatic Implants
Maxillary resection for cancer, zygomatic implants insertion, and palatal repair as single-stage procedure: report of three cases 3-11
A new surgical and technical approach in zygomatic implantology 12-21
Treatment of severe atrophic maxilla with zygomatic implants 22-26
A Novel Guided Zygomatic and Pterygoid Implant Surgery System: A Human Cadaver Study on Accuracy 27-46
Three-Dimensional Technology Applications in Maxillofacial Reconstructive Surgery: Current Surgical Implications 47-64
Platform switch hybrid zygoma implants improve prosthetics and marginal bone protection after extra-sinus placement 65-71

Surface treatment of Dental Implants
Comparison of Implant Stability Quotient of sand blasted large-grit acid etched (SLA) & biological calcium phosphate surface treated (RBM) dental implants using Resonance Frequency Analysis - A Parallel Arm Double Blinded Randomized Controlled Trial 74-82

Prevention of Peri Implantitis
A new system of implant abutment connection: how to improve a two piece implant system sealing 84-89
A Comparative Evaluation of Height of Interdental Papilla around Noris Tuff TT and Nobel Active Dental Implants placed in Maxillary Anterior Region 90-94

Clinical challenges
A new spiral dental implant: a tool for oral rehabilitation of difficult cases 96-101
Zygomatic Implants
Maxillary resection for cancer, zygomatic implants insertion, and palatal repair as single-stage procedure: report of three cases

Pietro Salvatori1*, Antonio Mincione2, Lucio Rizzi2, Fabrizio Costantini1, Alessandro Bianchi1, Emma Grecchi3, Umberto Garagiola4 and Francesco Grecchi5

Abstract

Background: Oronasal/antral communication, loss of teeth and/or tooth-supporting bone, and facial contour deformity may occur as a consequence of maxillectomy for cancer. As a result, speaking, chewing, swallowing, and appearance are variably affected. The restoration is focused on rebuilding the oronasal wall, using either flaps (local or free) for primary closure, either prosthetic obturator. Postoperative radiotherapy surely postpones every dental procedure aimed to set fixed devices, often makes it difficult and risky, even unfeasible. Regular prosthesis, tooth-bearing obturator, and endosseous implants (in native and/or transplanted bone) are used in order to complete dental rehabilitation. Zygomatic implantology (ZI) is a valid, usually delayed, multi-staged procedure, either after having primarily closed the oronasal/antral communication or after left it untreated or amended with obturator.

The present paper is an early report of a relatively new, one-stage approach for rehabilitation of patients after tumour resection, with palatal repair with loco-regional flaps and zygomatic implant insertion: supposed advantages are concentration of surgical procedures, reduced time of rehabilitation, and lowered patient discomfort.

Cases presentation: We report three patients who underwent alveolo-maxillary resection for cancer and had the resulting oroantral communication directly closed with loco-regional flaps. Simultaneous zygomatic implant insertion was added, in view of granting the optimal dental rehabilitation.

Conclusions: All surgical procedures were successful in terms of oroantral separation and implant survival. One patient had the fixed dental restoration just after 3 months, and the others had to receive postoperative radiotherapy; thus, rehabilitation timing was longer, as expected. We think this approach could improve the outcome in selected patients.

Key words: Maxillectomy, Zygomatic implant, Tumour resection, Maxillofacial, Carcinoma, Maxillary reconstruction.

Backgrounds

Major defects following maxillectomy for cancer include oronasal/antral communication, loss of teeth and/or tooth-supporting bone, and facial contour deformity.

As a result, speaking, chewing, swallowing, and appearance are variably affected. Priority of restoration is focused on rebuilding the oronasal wall, by means either of flaps (local or free), either prosthetic obturator.

Dental rehabilitation might follow by means of regular prosthesis, toothbearing obturator, and endosseous implants (in native and/or transplanted bone). Zygomatic implantology (ZI) has been first mentioned by Aparicio et al. in 1993 [1], then proposed by Brånemark [2] in order to overcome bone availability after maxillectomy.

Commonly, this option is offered as delayed procedure after tumour resection. Later, ZI has been employed in non-neoplastic, severely atrophic maxilla [3–11].

The present paper is an early report of a relatively new, one-stage approach providing for tumour resection, palatal repair with loco-regional flaps, and zygomatic implant insertion in three patients. Advantages are concentration of surgical procedures, reduced time of rehabilitation, and patient discomfort.

* Correspondence: pietro.salvatori@fastwebnet.it
1 Department of Otorhinolaryngology-H&N Surgery, Humanitas San Pio X Hospital, Via F. Nava 31, 20159 Milan, Italy
Full list of author information is available at the end of the article.
Three patients have been operated on for malignant neoplasms affecting the maxilla at the Legnano Hospital, Italy, and at the Humanitas San Pio X, Italy. Written informed consent was obtained from each patient, and the study protocol conformed to the ethical guidelines of the World Medical Association Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects. Surgical plan was based on tumour resection, palatal repair, and zygomatic implant insertion in view of fixed dental rehabilitation.

CT scan for zygomatic bone evaluation was part of working up. No virtual planning of resection or of implant insertion was considered, and fixture placement was performed under direct vision, enhanced by simple resin guide simulating the resected dental arch. All patients were dentate (natively or after fixed restoration) and resulted partially dentate after tumour resection, so fitting class IIA defect classification, according to Pellegrino et al. [12]. Osteotomies were achieved with saw, burs, and piezosurgery. Frozen sections were obtained in order to demonstrate clean margins.

The zygomatic bone was adequately exposed. Implants from Noris Medical Ltd. (Nesher, Israel) were chosen. The working, threaded part of the implant is 13 mm long, while the remaining, fully smooth shaft has 4 mm diameter and variable length. In all, length ranges from 35 to 57.5 mm. Implant drilling was performed using both straight and angled handpieces.

The fixtures were placed at 35 rpm for the 2/3 of the apical and manually for the most coronal 1/3 working part. Palatal-alveolar repair was attained with soft tissue, local flaps: these were also wrapped around the implants. In order to obtain a durable watertight seal between oral and nasal antral cavities, implant uncovering and loading were planned to be deferred by 3 months.

CT scans and/or panoramic radiograph were taken to monitor implant healing. Screw-retained fixed prosthesis was considered for teeth replacement.

Patient no. 1

A 76-year-old gentleman suffering from lichenoid mucositis was operated on for verrucous carcinoma of the vestibular attached gingiva in the areas of 22 and 23, in 2013. The tooth 24 was missing, having been extracted elsewhere years before. Clear margins were obtained, and healing was uneventful. Then, the patient regularly attended follow-up examinations: on April 2015, a white, creamy discharge was noted from the gingiva covering the 24 socket. The gingiva was opened and the socket debrided. Histologic examination of the removed material was consistent with verrucous carcinoma. CT scan showed a radiolucent area involving the socket of 24 and the surrounding bone (Fig. 1). The neoplasm was staged T4 N0. The patient underwent partial maxillectomy involving the antral floor, the alveolar bone, and teeth 23 to 25. The tooth 26 had abnormal mobility, hence was extracted.
Patient no. 2

A 43-year-old lady bearing an adenoid cystic carcinoma of the left maxilla was referred for treatment. Clinical and radiologic examination led us to stage the tumour T4 N0 (Figs. 6 and 7). The patient underwent left extended maxillectomy (Fig. 8). A prefabricated occlusal replica (Fig. 9) allowed the most correct insertion of two zygomatic implants (40 and 42.5 mm, respectively). Then, the left temporalis muscle flap was entirely raised and rotated to fill the defect and to wrap the implants (Fig. 10). The fascial side was stitched to the mucosal margins in order to separate the sino-nasal cavity from the oral one (Fig. 11). The postoperative period was uneventful, and care had been taken in order to contrast trismus since the surgery. The final pathologic report alerted against perineural invasion, and some spotted margins close to the tumour. These data, together with the tumour nature and extension at presentation, led to address the patient to receive a full course of adrotherapy. Regrettably, the latter treatment carried some important sequelae (radionecrosis in the pterygoid region and trismus, mostly antalgic) that forced to delay dental rehabilitation. However, hyperbaric oxygen therapy and sequestrectomy granted the complete healing of radionecrosis and trismus improvement: implant stability was checked during this in-office surgery and appeared fully satisfactory, so did CT scan imaging. Pathologic examination did not reveal any relapsing disease.

Patient no. 3

A 65-year-old gentleman suffering from squamous cell carcinoma of the upper gingiva underwent right partial maxillectomy (Fig. 12). The lesion showed have arisen around three endosseous implants placed years before in the teeth 13, 14, and 15 areas. The CT scan did not demonstrate frank bone involvement, neither neck node extension (Fig. 13) nor distant metastases. Consequently, a large oroantral communication derived...
from tumour ablation (that had to include the three implants); the fat pad flap preoperatively planned was judged adequate after harvesting and actually used to close the defect. Compromised teeth 11 and 21 were also extracted and immediately replaced by two standard implants. A third standard, tilted implant was posed in the 13 area. Finally, one zygomatic implant was inserted in order to emerge in the 16 area (Fig. 14). Postoperative course was complicated by limited suture dehiscence, without oroantral fistula, and spontaneous healing was then reached adopting a conservative treatment (Figs. 15 and 16). Pathologic examination demonstrated clear margins in the sinus mucosa, but bone invasion upstaged the patient from cT2 to pT4, and then, adjuvant radiotherapy was advised. Soft tissues were allowed to recover from radiation upshots and the prosthetic timing was subsequently scheduled.
Discussion

Neoplasms of the maxilla often require extensive surgery and adjuvant treatments; as a consequence, quality of life might result as heavily impaired.

Reconstructive surgery (immediate or delayed) allows anatomic and basic functionality restoration following maxillary tumour resection. Actually, the most important goal has to be achieved—as earlier as possible—is the repair of the natural barrier between oral and nasal/antral cavities: options include free or local flaps and obturator.

Free flaps may either be harvested as single component, or as soft tissue and bone complex. Among the latter, fibula, iliac crest, and scapula are the most popular, with personal preference for the fibula flap. These composite auto-transplants allow both restoration of the oronasal/antral barrier and bone support for implants. Disease-related indications for composite free flaps include repair of large defects (2/3 of the palato-alveolar complex) and 3-D maxillary reconstruction. Their use implies large consumption of resources, yet patients’ survival is quite rewarding [13]. In contrast, local and regional flaps are less demanding, but their use is restricted to more limited palato-alveolar defects (up to the midline). The temporalis muscle is the workhorse for repairing such defects, while buccal fat pad has room in case of minor oronasal/antral communications [14]. When needed, adequate bone support may be set by secondary bone grafting.
Finally, prosthetic obturator is recommended when the above solutions cannot be available or are contraindicated: it requires adequate anchoring (residual dentition, standard implants, deep vestibular sulcus) and continuous servicing.

In our opinion, primary closure by flaps should be preferred over prosthetic obturator, as this approach makes the patients more comfortable and prosthesis-free, immediately and during his/her daily activity. Indeed, in all three patients, local flaps have performed well and led to successful immediate closure of the oroantral communication following tumour ablation. Seok et al. [14] advocate the application of 4-hexylresorcinol in order to accelerate and improve re-epithelialization.

Common belief stresses that follow-up in patients wearing obturator would be easier and safer than that in patients having surgical closure of the palate. In fact, possible local recurrence of the tumour could be detected early, yet benefit in survival of such a policy has not definitively proved. Moreover, modern imaging techniques could be at least as effective as inspection in revealing possible relapse at an early stage.

Nevertheless, some patients are or become more demanding about full or maximum recovery of the finest activities linked to chewing, phonation, deglutition, and aesthetics: in these cases, dental rehabilitation through implant-supported prosthesis might greatly help, the fixture(s) being usually inserted in native or grafted bone. Zygomatic implants could overcome the possible problem of lacking or poor-quality bone [2, 5, 12, 15–22]. In such patients, ZI is usually a delayed, multi-staged procedure, either after having primarily closed the oronasal/antral communication [12, 17, 19], either after left it untreated or amended with obturator [5, 16, 18]: the overall time from tumour treatment and final dental rehabilitation might require 1 year or more. Intuitively, interest has arisen in shortening this gap and we planned to move toward this direction.

The relatively innovative aspect of the present paper deals with the idea of challenging three different tasks in a single-stage procedure: resection of the tumour, closure of the oronasal/antral communication, and insertion of the zygomatic implants finalized to a fixed restoration.

In few words, we tried to reach the best cost/benefit ratio. Indeed, Pellegrino et al. [12] should be credited for the first reported case, even if not clearly evident from their paper (personal communication from Prof. C. Marchetti). The authors also proposed a new classification of rehabilitation-orientated maxillary defects: in our opinion, it deserves attention because of its clarity and effectiveness in orientating therapeutic options.

We were able to complete the above plan within the expected period of 3 months in patient no. 1, whose outcome is optimal after 1 year.

Supplementary advantage of ZI at the time of tumour resection is to give implants sufficient time to become osseointegrated before prospective radiotherapy course,
then avoiding or minimizing its well-known negative impact on healing [23]. Actually, patient nos. 2 and 3 took some benefits from this policy.

In addition, applying a maxillary prosthesis in the early stages minimizes contraction of facial soft tissues [16].

We performed ZI under direct vision, enhanced by resin guide pointing landmarks. The procedure was somewhat easier than ZI in simply atrophic patients, as the resected bone allowed more room to vision and manipulation. On the other hand, the prepared flaps and the residual dentition could make things a bit more difficult than usual situations. Some authors advocate either general [24] or specific computer-aided surgery [12, 25], or surgical navigation [15, 26], for accurate, safe zygomatic implant installation. Undoubtedly, these are effective apparatuses, whose limitations are availability and operating costs. The pilot hole technique [27] and piezosurgery could offer similar advantages—at least in terms of safety—with lower costs.

Zygomatic implants are most suitable for immediate loading in reason of the high torque usually necessary for their insertion and consequent outstanding primary stability. However, we privileged the delayed loading to achieve and maintain an adequate seal between oral and nasal/antral cavities.

Long-term results of ZI are quite satisfactory. Brånemark [2] reported a 97% success rate in a series of 184 zygomatic implants inserted in 81 patients. Aparicio et al. [10] conducted a large review of zygomatic implant survival: success rates ranged 94.4 to 100%. Recently, Chrcanovic et al. [11] extended the analysis over 4556 zygomatic implants in 2161 patients: they found a noteworthy 12-year cumulative survival rate of 95.21%

Despite the prosthetic aspects of the proposed technique are somewhat beyond the paper scope, some considerations appear obliged. Screw-retained, metal-core dental prostheses are popular, manageable devices allowing easy removal for fixture inspection and cleaning. An interesting point is that in patient no. 1, the interdental and inter-arch obligations lead to a double-cantilevered dental restoration, entailing a possible overload: to mitigate it prudently, mesial (to 23) and distal (to 27) splinting were conceived. Indeed, implant stability was preserved, as checked at regular clinical and X-ray follow-up examinations (Fig. 5).

Within reason, delayed ZI insertion in regard of radiotherapy and/or primary ablative surgery would have been more hazardous and difficult, if not impossible. In turn, fixed dental restoration would have been more demanding, more lasting, suboptimal, even not feasible. Concisely, immediate insertion of ZI at the ablative tumour time could be considered as a biological investment.

Conclusions

In selected cases, maxillary resection, zygomatic implant(s) placement, and palato-alveolar repair through local flaps can be conducted as same-stage procedure. Advantages would include the following:

- Immediate closure of the oronasal communication
- Quick return to normal or near-normal feeding and phonation
- Wide access to bony segment receiving zygomatic implants
- Unnecessary bone grafting Short surgery time
- Reduced number of substantial interventions
- Short time-to-rehabilitation
- Reduced financial impact
- Valid functional results
- Excellent long-term performance of ZI

We intend to propose this approach and wish the results will be confirmed in large series.

Abbreviations
Pt: Patient; ZI: Zygomatic implantology

Acknowledgements
The authors wish to warmly thank Mr Walter Quaglia, a dental technician, for his enthusiastic lab support.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials
Not applicable.

Authors’ contributions
PS ideated the approach, performed the surgery, took care of the patients, collected the data, and wrote the manuscript. FG planned and performed or assisted with the implant surgery.

AM, LR, FC, and AB assisted with the surgery and took care of the patients. EG helped in the data collection, documentation, and editorial assistance. UG did the critical review. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
All patients have agreed and signed the consent for publication.

Ethics approval and consent to participate
Written informed consent was obtained from each patient, and the study protocol conformed to the ethical guidelines of the World Medical Association Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects.
References

A New Surgical And Technical Approach In Zygomatic Implantology

F. GRECCHI¹, A.E. BIANCHI², S. SIERVO², E. GRECCHI¹, D. LAURITANO³, F. CARINCI⁴

¹Department of Maxillofacial Surgery, Galeazzi Hospital, Milan, Italy
²Department of Maxillofacial Surgery, "Istituto Stomatologico Italiano", Milan, Italy
³Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
⁴Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy

SUMMARY

Purpose: Different surgical approaches for zygomatic implantology using new designed implants are reported. Material and methods. The surgical technique is described and two cases reported. The zygomatic fixture has a complete extrasinus path in order to preserve the sinus membrane and to avoid any post-surgical sinus sequelae. Results. The surgical procedure allows an optimal position of the implant and consequently an ideal emergence of the fixture on the alveolar crest.

Conclusion: The surgical procedures and the zygomatic implant design reduce remarkably the serious post-operative sequelae due to the intrasinus path of the zygomatic fixtures.

Key words: zygomatic implantology, atrophic maxilla, immediate loading.

Introduction

During the last two decades, the placement of zygomatic implants, usually inserted through the maxillary sinus and apically stabilized in the zygomatic bone, has proven to be an effective option in the management of severe atrophic edentulous maxilla (1-4). Zygomatic implants are an useful option in atrophic jaws to avoid bone grafting plus standard implants insertion (5-52, 112-114).

The installation of zygomatic implants was firstly introduced by Brånemark et al. in 1998 in order to rehabilitate the masticatory and the aesthetic functions in severe atrophied maxilla caused by trauma, congenital conditions, tumour resections or increased sinus pneumatisation (53). Given the high success rate reported in literature for ZIs placement, this surgical technique can be considered as a valid alternative to bone augmentation and invasive surgery to restore function and improve the aesthetic result for patients with atrophic edentulous maxilla (2, 53- 57).

Zygomatic implants, in fact, were subsequently used to rehabilitate severe atrophic upper jaws, classes V and VI, according to Cawood and Howell classification of edentulous jaws (58). At the beginning 1970 Linkow presented a surgical technique to rehabilitate extremely atrophic maxillae placing smooth implant (diameter 2 mm) apically inserted in the zygomatic bone (59).

New procedures and improvements have been developed since the description of the classical surgical technique in 1998 (53). Stella and Warner introduced the “sinus slot approach” in 2000, a zygomatic implantation method that minimize the presence of the zygomatic implant through the sinus, improving the emergence orientation of the implant, because it allows a more vertical angle of the fixtures than the original technique (60, 115). In 2013 Aparicio (61) et al. proposed a surgical technique based on the relationship between the zygomatic/alveolar crest complex and the various anatomy guided zygomatic implants pathways (ZAGA) (61).

Extremely absolute contraindications to the placement of zygomatic implants are acute sinus infections, maxillary or zygomatic bone pathologies and underlying uncontrolled or malignant systemic disorders. Relative contraindications are chronic infections of the maxillary sinus and smoking more than 20 cigarettes a day. Zygomatic implants placement in patients that use bisphosphonates is to this day debated. A maxillary sinus with any pathology should preferably be treated before or during surgical procedures (56).

The surgical intervention for zygomatic implant placement, with currently systematic devices offered on the market, results to be remarkably challenging and arduous and it frequently requires the use of general anesthesia. The post surgical sequelae described in the literature (61, 62, 116), such as rhinosinusitis, sinusitis, paresthesia, oroantral fistula, mucositis and perimplant soft tissue dehiscences, represent to this day a critical and significant limit to the implementation of the zygomatic implant surgery and the extensive regular practice of this procedure. The surgical...
Materials and methods

The surgical technique used for zygomatic implants placement considers the use of implant with a specific design: Noris Medical Zygomatic implant has an unthreaded long body ending with a particularly aggressive thread at the apical part of the implant The zygomatic implant is anchored in the zygomatic bone with the conical threaded apical segment; the resulting torque, by virtue of the apically threaded 12.5 millimetres, is extremely high. The implant is placed following the procedures of the extrammary protocol, which is a successive modification of the traditional Brånemark technique. In the extrammary approach a bypass of the maxillary sinus is made in order to prevent any damage to the sinus membrane and to avoid post surgical sinus sequelae. The implant prosthetic platform is therefore shifted buccally to a more appropriate position of the emergence close to the alveolar crest, a less bulky restoration and a better designed prosthesis. A special design of the drills have been made in order to allow the clinician to create a clean and safe tunnel preparation with minimal risk of damaging the membrane. An angled Multi-Unit abutment from 17° to 60° will then provide the correction of the emerging angle needed.

The operative technique we are now describing has the purpose to decrease and avoid post surgical possible complications derived from the sinus path of the zygomatic implant, as rhinitis and sinusitis, difficult and uncomfortable prosthetic restorations consequent to the palatal emergence of the abutments, and extensive problems with the intraoral perimplant soft tissue, as mucositis.

For the surgical approach a slightly incision is made in the maxillary alveolar crest extending from the first molar right region to the left one, paying attention not to injure the emergence of the descending palatine artery that, due to anatomical evolution of the atrophic maxilla, may arise in the alveolar crest.

Two posterior vestibular releasing incisions are made bilaterally considering the emergence of Stensen’s duct not to produce any accidental injuries, and a median releasing incision is made below the nasal spine.

Afterward a mucoperiosteal flap is raised simultaneously bilaterally along the whole incision or in two separate stages, according to the different anesthetic approach chosen for the intervention (general anesthesia or deep narcosis).

The mucoperiosteal flap reflection can be performed in two different ways depending on the surgical procedure implicated: the placement of only two zygomatic implants, or a quad-zygomatic surgery.

In the surgical case of two zygomatic implants placement, the mucoperiosteal flap is raised in order to expose the alveolar crest, the anterolateral wall of the maxillary sinus, and the origin of the zygomatic arch where the masseter muscle tendon is inserted; the mucoperiosteal flap of the paranasal region is raised medially to the emergence of the infraorbital nerve.

The infraorbital foramen is the posterior limit of the mucoperiosteal reflection and of the visible bone and it is exceeded only in case of special needs to reach the zygomatic notch and totally expose the outer surface of the malar region, area dedicated to the implant site preparation. In fact, normally the perception of the bone cutter spill is acquired from the fingertips through the thickness of the overlying skin on the malar bone.

In case of quad-zygoma surgery, the bone region exposed after the mucoperiosteal flap reflection is wider, and it reaches the lower orbital rim. The infraorbital foramen is localized and isolated both medially and distally, the emergence of the infraorbital nerve is meticulously ensured and protected during the entire surgical phases as the anterior zygomatic implant should be positioned at a safe distance from the aforementioned nerve.

The implant site preparation is performed with drills and burs mounted on a centro-angled handpiece. This expedient allows the posterior zygomatic implant positioning distal to the region of the maxillary second premolar easier. The end point of the anterior zygomatic implant will be close to the maxillary canine region bilaterally on the lowermost point of the alveolar crest.

After the mucoperiosteal flap is reflected, the surgical procedure minimum provides one or two corticotomies of the anterolateral wall of the sinus performed with a round diamond bur (4mm in diameter) in order to determine one or two marking points (Figures 1, 2).

The holes made through the bone with the round diamond bur, in order to set the correct place of the zygomatic implant, are then connected to the infraorbital emergence of the zygomatic implant earlier determined using zygomatic burs for groove preparation. These burs have a not working tip and a diamond cylindric body of three different levels of grit (fine, medium, coarse) (Figure 3).

The conical not working tip of the bur is inserted in the marking point which provides a valid point of support and fulcrum for the subsequent bone preparation in the premolar and in the distal canine region, passing from the coarser to the finer bur.

The bur will be further deepen with a tangential movement of go and come for two-thirds of its diameter.

This procedure correctly performed respects the integrity of the Schneiderian membrane.

In order not to lacerate the sinus mucosa during following actions, a gentle inward shift of the Small Schneiderian membrane with a sinus periosteal should be carried out (Figure 4).
Small accidental injuries and lacerations of the sinus mucosa in the region of the zygomatic recess are easily fixed and not significant in terms of sinusitis sequelae; on the contrary, those produced in the region of the alveolar crest, where the end of the zygomatic implant should be, must be solved also using resorbable membranes.

The zygomatic bone preparation, where the apex of the zygomatic implant will be placed and anchored, is performed with a sequence of drills with the final conical cutting tip 2.5 cm long and 2-3.2mm in diameter in apex (Figure 5).

The smooth body of the drill has the same diameter of the antrostomy previously carried out. This slot in the sinus wall reproduces a true apical surgical preparation guide for the drills and it prevents dangerous and unsafe errors due to the excessive movements caused by the length of the drills used. It avoids the deviation of the drill from the planned direction.
The first drill must totally penetrate the zygomatic bone and come out through the external cortical layer. It’s important to feel with a finger through the skin of the periorbital region the cutting apex of the drill coming out from the zygomatic arch, laterally on the malar bone.

The preparation of the zygomatic implant site continues with the sequence of drills.

A depth indicator is then used to decide the correct length of the zygomatic fixture. The tip of the depth gauge is located on the external cortical zygomatic bone.

The diameter of the final hole on the zygomatic arch carried out by the drills is approximately 2.2 mm in diameter, much lower than the final circumferential size of the implant (3.2 mm). This difference avoids the risk of emergence of the end of the zygoma fixture from the bone during malar screwing when searching primary stability.

Generally we firstly perform the preparation of the anterior zygomatic implant, which is the more complicated and dangerous one, and subsequently we complete the preparation of the distal fixture tilting the drills in relation to the residual bone available, the most posterior and vertical as possible, so that the apexes are convergent, but do not interfere between them.

The implant is positioned with an extraoral screwdriver, if the anatomy is favourable, or with the usual operations of screwing that we use in all types of endosseous implants (Figure 6).

The emergence of the fixture must be in the optimal site from a prosthetic point of view, on the alveolar crest. The angled abutment position is checked in order to obtain an ideal emergence of the prosthetic abutment, and it’s screwed.

The coverage of the region with Bichat fat pad or resorbable membranes is performed in those cases that present particular conditions of vestibular maxillary concavity and therefore it is not usually and frequently carried out (Figure 7).

The resorbable suture completes the surgical intervention.

Clinical case 1

A 59-year-old Caucasian male patient with partial edentulous maxilla required a fixed prosthetic rehabilitation with zygomatic implants. He had no history of pathologies that could contraindicate surgery.

Panoramic radiography and CT were examined to evaluate the bone volume of the maxilla and of the zygomas and to eliminate the risk of undiagnosed pathologies.

The surgery procedures were performed under general anesthesia with endotracheal intubation reinforced with local infiltration of anesthesia with vasoconstrictor. Three upper incisors were extracted and two zygomatic implants and four normal implants were placed (Figure 8).

Clinical case 2

A 51-year-old Caucasian female patient with total edentulous maxilla needed prosthetic rehabilitation with zygomatic implants. The patient refused grafting procedures prior to implant placement, as onlay bone grafting and/or sinus lift. It was decided to perform a quad-zygoma implant rehabilitation.

Pre op. radiographic examination, including orthopantomograms and computed tomography, were evaluated. An advanced vertical and horizontal bone loss of the alveolar ridge was revealed and there was no evidence of other pathologies that could exclude surgery.

The operation was executed under general anesthesia with nasotracheal intubation and local injection of anesthesia with vasoconstrictor. Four zygomatic implants were placed (Figure 9).
Discussion

A functional occlusal prosthetic rehabilitation of severely resorbed edentulous maxilla with conventional implant-supported dental bridges constitutes a difficult therapeutic challenge. Tooth extractions, use of dentures and the presence of extensive maxillary sinus often result in a lack of bone volume. Therefore there are many obstacles and limitations to the final result that can be achieved using bone-anchored fixed prostheses in all those patients with advanced atrophic maxilla. Recurrently the residual alveolar bone is too small for placement and osseointegration of dental implants. Many efforts have been made to pursue alternatives to major bone grafting procedures and to achieve a valid osseointegrated implant anchorage exploiting the residual native bone. The need of bone grafting may be replaced and bypassed by the use of remaining existing anchorage bone sites in the maxillary tuberosities, pterygoid plates or zygomatic bone. Some Authors suggested the pterigomaxillary suture as an alternative location for implant placement, but the risk of vascular damage is very high because of the path of the descending maxillary artery. Other Authors proposed the use of tilted implants and/or short implants to use the residual bone and to avoid any sinus lift procedures.

Brånemark et al. firstly introduced the use of zygomatic bone for anchorage of zygomatic fixtures. This surgical technique was presented for rehabilitating patients with extremely resorbed maxilla and wide-ranging maxillary defects due to tumor resections, congenital defects, traumatic events. The use of zygomatic implants reduced the time of treatment and the number of surgical operations. The surgical approach consists of a similar Le Fort I vestibular incision between the first molar region with vertical releasing incisions. Subsequently a mucoperiosteal flap is raised in order to expose the hard palate and the alveolar crest, the zygomatic complex, the lateral wall of the maxillary sinus, the infraorbital nerve. A bone window is opened at the uppermost lateral aspect of the maxillary sinus wall and the sinus membrane is prudently reflected in the sinus cavity. The site for the implant placement in the maxillary sinus and on the palatal side of the alveolar crest is then prepared with a series of drills. Unfortunately this surgical procedure often causes problems related to the intrasinus path of the zygomatic implant and patient discomfort and difficulties with hygiene procedures and speech due to the bulky dental bridge at the palatal aspect.

Since Brånemark, new procedures and improvements have been made.

In 2000 Stella and Warner introduced "the sinus slot approach". This operative technique allows a more vertical placement of the zygomatic implant and consequently a better buccal emergence of the implant. The crestal incision is less extensive than that of Brånemark: it’s made from one tuberosity to the contralateral one, vertical releasing incisions are made. The raising of the mucoperiosteal flap allows a good visibility of the region and the palatal mucosa is reflected only to expose the alveolar ridge. Two bur holes are made, the first on the superior extent of the contour of the zygomatic buttress, and the second one on the alveolar ridge. Afterward a slot connects the holes and it results in a small antrostomy in order to have a correct orientation of the drills used for zygomatic implants placement. The sinus mucosa is preserved and the implant can be directly seen during all the surgical procedures. A greater bone to implant contact is obtained. The presence of the zygomatic implant through the sinus is minimize and postoperative edema and ecchymosis are reduced. The patient discomfort decreases because of the improvements of the implant emergence, which results more buccally than the original technique.
Aparicio (61) et al. in 2013 proposed a more anatomically and more prosthetically driven approach called “the zygomatic anatomy guided approach” (ZAGA). This surgical technique focuses on interindividual anatomical differences between patients. No initial window or slot is needed to be prepared on the lateral wall of the maxillary sinus because the preparation of the zygomatic implant site is guided by the anatomy of the edentulous maxilla. The procedure, in order to determine the placement of the fixture, is different from the previously described techniques. Firstly, the correct emergence of the zygomatic implant on the alveolar ridge is established in order to obtain an optimal prosthetic outcome. Then, the apical entrance of the implant in the zygomatic bone is decided according to the number and to the length of implants required, and to the anatomy of the area. Thirdly, the implant pathway is identified after connecting the two points: the direction of the final preparation of the site is guided. The final path of the implant body may definitely depends on the anatomy of the patient, and it may vary from a totally intrasinus placement to a totally extrasinus one.

The surgical technique we have above described introduces new expedients and precautions in order to decrease and avoid post-surgical possible complications. The innovative design of the zygomatic implant is different from the first proposed and used by other Authors: the implant has an unthreaded long body ending with a particularly aggressive threaded apical segment. The risk of peri-implantitis is so decreased that is of paramount importance in two-stage implantology (13, 14, 16, 72-111, 117).

The zygomatic fixture has a complete extrasinus path in order to preserve the sinus membrane and to avoid any post-surgical sinus sequelae. The surgical procedure allows an optimal position of the implant and consequently an ideal emergence of the fixture on the alveolar crest. The correction of the emerging angle needed is provided thanks to angled Multi Unit Abutments from 17 to 60°.

Those developments and improvements both of the surgical procedures and the zygomatic implant design reduce the serious post-operative sequelae remarkably due to the intrasinus path of the zygomatic fixtures.

Acknowledgments

The Authors thank Dr. Balan Igal D.M.D (ISR) and Noris Medical.

References

Correspondence to:
Francesco Carinci
Department of Morphology, Surgery and Experimental Medicine
University of Ferrara
Via Luigi Borsari 46
44100 Ferrara, Italy
Phone: +39.0532.455874; Fax: +39.0532.455876
E-mail: crc@unife.it
Treatment of severe atrophic maxilla with zygomatic implants: a case series

I. BALAN1, M. DI GIROLAMO2, D. LAURITANO3, F. CARINCI4

1 Private practice in Israel
2 Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
3 Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
4 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy

SUMMARY

Treatment of severe maxillary atrophy with implants has achieved important successes in recent years. The limit of implant insertion is related to inadequate bone quantity (i.e. height and width). Alveolar bone grafting, sinus lifting and major grafting via Le Fort I osteotomy have used in the past to restore bone volume prior of implant insertion. However successes do not always occur and a second stage surgery is necessary in most cases. Immediate loading cannot be performed in all grafted bone. In recent years a new treatment approach has been proposed by using zygomatic implants. This new technique can provide a better stability to the prosthesis and less morbidity for patient. Here a cases series of eighteen patients rehabilitated with zygomatic together with standard implants and immediate loading is reported.

Key words: zygomatic implants, bone atrophy, severe resorbed maxilla, implant dentistry, bone.

Introduction

Treatment of severe maxillary atrophy with implants has achieved important successes in recent years (1, 2). The limit of implant rehabilitation is represented by inadequate bone height and width for which the treatment of severe atrophy shows still difficulties from the surgical and functional point of view (3-11). The severe atrophy of both maxilla and mandible causes further difficulties related to an inverse relationship between two jaws. Therefore, the correction of improper relationship of the bony bases is more complicated than a simple alveolar atrophy. When an edentulous maxilla is reabsorbed, the retention area of the total denture becomes narrower and shorter, since the anterior surface moves superiorly and dorsally, creating a form of the alveolar bone crest similar to a knife blade. The resorption of the edentulous maxilla determines a progressive loss of bone height, thus reducing the volume of bone available for fixture placement and decreasing the bone quality, consequently increasing the risk of implant failure. When these phenomena happen, the vertical resorption of alveolar bone increases the inter-arch space. As the projection of the maxilla decreases in the sagittal plane, the spatial relationship between the maxilla and mandible changes, thus creating a pseudo-prognathism. This discrepancy between the two jaws creates problems both in the rehabilitation with removable or fixed prostheses. The jaws are resorbed till the muscle insertion causes a dislocation of the prosthesis and inhibit an adequate insertion of the implants. The combination of the loss of sagittal projection of the maxilla and a decrease in vertical height, results in a collapse of the soft tissues of the lower third of the face, therefore the patient experiences an aged expression, and the quantity of residual bone is unfavourable to the retention of the denture. Various processes have been designed to increase the volume of the alveolar ridges and allow an adequate reconstruction of the dentition. Orthodontic surgical techniques have just been developed to restore the jaws in a correct skeletal position when a malocclusion occurs in dentate patients. The same procedures, such as the maxillary Le Fort I osteotomy, can be used in edentulous patients to correct the discrepancies between the jaws and restore an implant-supported dentition. Bone grafting procedures are frequently used to increase bone volume and place the implants in the same surgical time (12, 13). Sinus lifting and alveolar bone grafting are minor and well known techniques in oral surgery.

In recent years a new treatment has been proposed with zygomatic implants. This new technique can provide a better stability to the prosthesis and less morbidity for patient. Here a series of 18 patients treated with zygomatic implant in combination with standard fixture (Noris Medical, Israel) are reported and clinical outcome discussed.
Materials and methods

A series of eighteen patients with severe atrophy of maxilla were admitted at the Balan Clinic (Kiryat Yam, Israel) in the period between August and December 2013. There were 10 females and 8 males with a median age of 62 (min-max 36-86) all with general advanced periodontitis, most with complete edentulness. Half of patients had good general health and none was pregnant. Three patients had hypothyroidism, five have diabetes, one was affected by prostate cancer and one by cervical cancer. The protocol is similar to that previously reported (14).

The surgery was performed under local anaesthesia with intravenous conscious sedation after antibiotic prophylaxis with amoxicillin and clavulanic acid (2 g) two hours before surgery.

Pre-operative medication protocol

One hour prior to dental surgery: 1 g Augmentin (amoxicillin and clavulanate potassium) for patients who are allergic to penicillin - 600 mg Dalacin (clindamycin); 12 mg dexamethasone (not for diabetics); 20 mg vaben (oxazepam); 100 mg Otarex (hydroxyzine hydrochloride); 2 tab narocin 275 mg (naproxen); 1 cap Losec 20 mg (omeprazole); probiotic.

Surgical protocol (Figures 1-6)

A palatal incision is made in the maxillary crest with a bilateral vertical posterior releasing incisions (like Le Fort I exposure). A muco-periosteal flap was reflected to expose the alveolar crest, the piriform opening, the central and posterior part of the zygomatic complex, the infraorbital nerve emergence and the lateral wall of the maxillary sinus. The retractor was then placed to separate the cheek to guide the osteotomy and to protect the soft tissue from drilling. The compression of the infraorbital nerve with retractor must be avoided as well as the invasion of the orbit. Implant sites were prepared and guided positioning of the pterygoid and standard implants. Corticotomy of the anterolateral wall of the maxillary sinus was done. The antrostomy was performed with a diamond ball drill with a progressive diameter preserving and slightly detaching the sinus membrane. Following the inclination predisposed by the slot, the zygomatic implant beds were prepared under visual control using progressive-diameter drills with extra-oral access and alveolar zygomatic arch direction. Then zygomatic implants (Noris Medical, Israel) were then screwed manually. Afterwards standard implants were inserted in premaxilla. The definitive prosthesis was screwed using preformed abutments. Haemostasis control was followed by suturing of the surgical field.

Figure 1
Right and left CT showing the pre-surgical maxillary atrophy.

Figure 2
Drills and surgical preparation of the grooves for implant placement in the lateral wall of maxillary sinus.

Figure 3
Right and left zygomatic implants inserted.
Post-operative medication protocol

Antibiotics: Moxypen (amoxicillin) 500 mg 3 times a day/ Augmentin 500/875 3 or 2 times a day/ Dalacin 300 mg 3 times a day, for 7 days; 0.12% chlorhexidine rinse for a month; 400 mg ibuprofen every 4 hours, if needed; dexamethasone, starting with 12 mg daily and reducing 2 mg each following day, Botox (dilute according to manufacturer’s instructions, divide to 6 doses, inject to the Masseter muscle in 3 points along the muscle, in each side).

By using the above mentioned technique a total of 29 zygomatic implants were inserted in the second premolar area of upper (left and/or right) maxilla. Additional 99 standard implants were inserted to restore the upper jaw (mean 5.5 implants per patient).

All patients agree to follow a strict oral hygiene protocol and recall. The post-operative period was uneventful and no soft tissue down-growth to interfere with the bone healing. The rehabilitation was successfully completed on all the implants with no adverse event reported by the patient.

Results

There were 10 females and 8 males with a median age of 62 (min-max 36-86). Half of them have a systemic diseases or major illness. A total of 29 zygomatic implants (Noris Medical, Italy) was inserted. In six cases ZI were single and place only in one side of upper maxilla. No one implant were lost after 12 months of follow-up. Provisional prosthesis was delivered the same day of surgery and patients have a great improvement in their quality of life.

Discussion

Maxillary atrophy is a hot topic of current implantology. Several different options were proposed over time, starting from simpli alveolar grats and sinus lifting to Le Fort I osteotomy combined with inlay bone block.

Zygomatic implants, introduced by Branemark in 1997 for the prosthetic rehabilitation of patients with serious and extended defects of the jaws caused by post-oncological resections, trauma or congenital malformations, have proven over the years a valid alternative in the treatment of atrophy of the jaws, presenting high success rates (96% in 10 years) (15). The technique used in our study, implies the insertion of implants in the frontal portion of zygomatic bone, and the residual alveolar-basal bone as anchorage of standard implants, decreasing the biological cost of surgery, and improving the postoperative morbidity and the healing time. In the majority of cases, it is possible a rehabilitation of the maxilla with a denture, with 2 zygomatic implants in adjunction to traditional implantology of the pre-maxilla. Besides the success rate of zygomatic implants is above 80%, peri-implantitis
may occurs in zygomatic rehabilitations also (16-21). Peri-
implantitis and periodontal disease spring from bacterial
infection that activates a cytokines cascade leading
to inflammation and bone loss (22-25). In addiction,
the patient-related susceptibility is a critical factor for
disease onset.
So, every factor favouring oral biofilm formation (poor
oral hygiene), host defence capability (smoking habit,
excessive alcohol consumption, genetic traits, history
of periodontitis, use of bisphosphonates), might favour
developing of peri-implants and periodontal disease
in zygomatic implants, which diagnosis and treatment
require dentist’s engagement (26, 27).

Recently zygomatic implant solution has become
popular since patients ask for therapies that offer a good
final result while at the same time reduce costs, healing
time and the temporary inability to work, as is the case
of major grafting surgeries. So this procedure, that
avoid big surgical field both for collecting and grafting
bone, reduces the morbidity of treatment especially if
one consider the advanced age of patients that request
this treatment or type of pathology that determines
the surgical indications such post-traumatic sequelae,
post-oncological resections and severe malformations.
In addition, bone grafting usually requires some time
before fixtures and prosthesis can be loaded with
consequent discomfort and limitation to social life.

In the recent literature there are few studies describing
zygomatic implants to restore severe atrophic maxilla
based on a large case series. Early publications on
zygomatic implants were presented as case reports (28-38).

By considering our large case series, it became evident
that the reconstruction of an atrophic jaw with zygomatic
implants provide a good fine prosthetic solution while
reduce the disadvantages related to a major surgery. In
fact, it not only allow an immediate loading prosthetic
rehabilitation but also restore the correct maxillary
relationships and improve the aesthetics of the face.
Among the most important advantages in using
zygomatic implants are a more retentive denture-bearing
ridge and a correct relationship between the two jaws.
The use of zygomatic implants prevents problems
related to potential bone resorption which usually
happen after grafting.

In conclusion, oral rehabilitation of the maxilla with
zygomatic implants can be used in selected patients,
significantly shortened the time of rehabilitation with a
reduction of adverse effects.

References

Correspondence to:
Dorina Lauritano, DDS
Department of Medicine and Surgery
University of Milano Bicocca
Via Cadore 48
20052 Monza, Italy
Phone: +39.0392332301
Fax: +39. 03923329892
E-mail: dorina.lauritano@unimib.it
A Novel Guided Zygomatic and Pterygoid Implant Surgery System: A Human Cadaver Study on Accuracy

Francesco Grecchi, Luigi V. Stefanelli, Fabrizio Grivetto, Emma Grecchi, Rami Siev, Ziv Mazor, Massimo Del Fabbro, Nicola Pranno, Alessio Franchina, Vittorio Di Lucia, Francesca De Angelis, and Funda Goker

Abstract: The aim of this human cadaver study was to assess the accuracy of zygomatic/pterygoid implant placement using custom-made bone-supported laser sintered titanium templates. For this purpose, pre-surgical planning was done on computed tomography scans of each cadaver. Surgical guides were printed using direct metal laser sintering technology. Four zygomatic and two pterygoid implants were inserted in each case using the guided protocol and related tools. Post-operative computed tomography (CT) scans were obtained to evaluate deviations between the planned and inserted implants. Accuracy was measured by overlaying the real position in the post-operative CT on the virtual presurgical placement of the implant in a CT image. Descriptive and bivariate analyses of the data were performed. As a result, a total of 40 zygomatic and 20 pterygoid implants were inserted in 10 cadavers. The mean deviations between the planned and the placed zygomatic and pterygoid implants were respectively (mean ± SD): 1.69° ± 1.12° and 4.15° ± 3.53° for angular deviation. Linear distance deviations: 0.93 mm ± 1.23 mm and 1.35 mm ± 1.45 mm at platform depth, 1.35 mm ± 0.78 mm and 1.81 mm ± 1.47 mm at apical plane, 1.07 mm ± 1.47 mm and 1.22 mm ± 1.44 mm for apical depth. In conclusion, the surgical guide system showed accuracy for all the variables studied and allowed acceptable and accurate implant placement regardless of the case complexity.

Keywords: zygomatic implant; guided surgery; computer aided implantology; navigation; dynamic navigation; surgical guides; surgical templates; pterygoid implants; CAD/CAM; accuracy; guidance

1. Introduction

The goal of every surgical procedure, including implantology, is to achieve the planned result after carefully evaluating the cost-benefit ratio. Many variables can be influential on the design of the project and the accuracy of the outcomes. The accuracy of the diagnostic phase, the quality of the materials used, the operator’s skills and expertise are all essential factors, and together with the advances in technology and the progressive improvement in the development of the devices used, allow one to achieve optimal clinical outcomes [1–4].
Currently, there is a continuous evolution and improvement in order to overcome operators’ limitations and to minimize the gap of precision placement between expert operators and professionals with less experience in advanced surgical techniques [5–10]. In the medical field, one of the first examples dates back to the late 1970s and is the well-known advent of the Russian mechanical staplers for gastrointestinal surgery, which allowed inexperienced surgeons in peripheral hospitals to achieve results as excellent as experienced operators [11].

Currently, dynamic/static guided surgery is one of the hottest research topics in the field of conventional, pterygoid and zygomatic implantology [5,12–16]. The static guided surgery systems utilize surgical templates to guide the drilling process [15]. Dynamic navigation options plan and calibrate the ideal position of the implants by optical reference markers placed over the patient, and insert implants in accordance with the three-dimensional (3-D) image on navigation system using surgical instruments by means of a tracking system array [15,17–19]. Both of these guided surgery navigation methods for conventional dental implant placement have been widely evaluated and reported in literature with high accuracy levels as results [5,20–22].

In the guided implant placement, a pre-operative virtual plan and an accurate surgical diagnosis are crucial to evaluate the anatomical structures, in order to minimize the intra/post-operative complications and to improve the treatment outcomes [5,23–27]. Today, with the help of technological developments, it is possible to assess the 3-D anatomy of the patients and pre-operatively plan the ideal position of the implants, using the data provided by Computed Tomography (CT) and adequate surgical software programs [5,12–15].

The development of the imaging technologies known as Cone Beam Computed Tomography (CBCT) has led to a significant improvement in the pre-surgical planning, since it provides three-dimensional (3-D) data of the patient’s anatomy with less radiologic dose than Computed Tomography (CT). In addition, it is possible today to virtually place the dental implants in their ideal position, through various software programs, using the DICOM (Digital Imaging and Communication in Medicine) data provided by CT scans [5,23–30].

Computer-guided implant placement represents several advantages when compared to free-hand surgery, including minimally invasive surgery with a reduction of operative time and steps. Additionally, these protocols allow prosthetic-driven implant placement with more accurate results and simplified procedures, making them applicable even by less experienced clinicians [6,27,31–33]. Currently, the majority of the reports in literature involve studies with high level experienced operators. There are only a limited number of model-based studies investigating whether the surgical experience has an impact on implant placement accuracy while using drilling guides [34,35]. According to the literature, there is an improvement in the precision of computer-guided implant placements compared to conventional ones, however the reports evaluating the results between inexperienced and skilled surgeons are not consistent, although similar values of errors were found [14,35,36].

Zygomatic and pterygoid implants were suggested as an alternative treatment to massive grafting surgery in the severe atrophic maxillary. The typical zygomatic implant length, ranging from 35 to 60 mm, and the proximity to many anatomic limitations such as vessels, nerves and structures such as the orbit, makes this procedure a challenging one and exposes the operators to higher risks when compared with conventional dental implantology [37]. Stella and Warner in 2000 described the sinus slot technique to prepare the site between the base of the zygoma to the bone crest, avoiding injuries to the sinus membrane. This approach also helped to respect the ideal three-dimensional zygomatic implant site preparation as the following drills can work free from any deviation generated by the bone crest remnants [38]. One of the main problems with guided zygomatic implant insertion is the application of the methods deriving from traditional implantology (which is based on a two-dimensional view of the problem, to zygomatic implants, whose vision must be strictly kept in mind in the third angular dimension) [39,40]. A dedicated system for zygomatic implant placement based on a bone-supported surgical template seems to be
reasonable to increase the safety and the accuracy. It is still difficult to achieve the correct driven angle of zygomatic osteotomies, and additional researches with randomized clinical trials are needed to assess the predictability of these procedures [13,40,41].

The aim of this cadaver study was to analyze zygomatic and pterygoid implant deviations when applying a novel surgical guide protocol for ZI/PI surgery, as an alternative to free hand placement. The accuracy was evaluated by merging the pre-operative and post-operative CT scan datasets to assess the effect of this novel surgical guide on implant deviations.

2. Materials and Methods

This study evaluates accuracy of zygomatic and pterygoid implant insertions, during a practical training on human cadavers with unexperienced surgeons (in zygomatic implant insertions). A total of 4 zygomatic and 2 pterygoid implants were placed in each cadaver’s head (10 cadaver heads in total), using DMLS (Direct Metal Laser Sintering) 3D printed titanium surgical templates.

The cadavers were donated by individuals for their use in scientific purposes and an official laboratory permission to work on cadavers was obtained from Italian competent authority (Prot. Nr 08-05 Maggio 2021). Common rules/guidelines applied in European Union which was used in this study while working on cadavers were as follows:

- Cadavers were treated with respect at all times
- A professional attitude was applied during all lab procedures
- Human cadaver material was not removed from the laboratory under any circumstances.
- No photographs or video cameras were used in the laboratory
- Only health professionals enrolled in the course and instructors entered the lab
- All cadaver material remained at the assigned dissection table
- Incomplete dissections or intentional destruction of dissected structures was considered unprofessional behavior and work area was kept as clean as possible.

The guide design was performed by a clinical plan based on the CT scan of each maxilla. The CT scan Gantry tilt was 0° and slices thickness were 0.4 mm. After implant insertions, a new CT scan was carried out to compare deviations between planned and achieved implants. Accuracy was measured by overlaying the real implant position in the postoperative CT on the virtual presurgical placement of the implants in the preoperative CT scan. The accuracy evaluation involved angular and linear (coronal, apical and depth) deviations.

2.1. Presurgical Procedure

In brief, a pre-operative CT scan was taken for each cadaver and the resulting DICOM files were segmented, forming STL (Standard Triangulation Language) files. Using a dedicated planning software, both zygomatic (ZI) and pterygoid implants (PI) were planned (Figure 1) and the surgical templates were designed (Figures 2 and 3). Each STL file of the maxillary bone with planned zygomatic and pterygoid implants became the baseline for the post-operative comparison. A post-operative CT scan of each cadaver’s head with implants was taken after the surgery.
The DICOM images of the post-operative CT were uploaded in a dedicated software (mimics Medical 19.0, Materialise Dental, Leuven, Belgium). Segmentation based on tissue density was carried out in order to separate implants from the surrounding bone.

The STL files of the maxillary bone with the planned implants, which were obtained from the first CT scan, were uploaded into the software. The superimposition of the pre-op and post-op CT images was achieved by using the best fit alignment tool (Figures 4 and 5).
Figure 4. Pre-operative and post-operative CT-scans superimposed and aligned for evaluation of planned and placed implants.

The planned and inserted implants were considered as cones with a base and an apex and their spatial coordinates (the center of the base and the apex) were registered by using a dedicated software (3-matic Medical 11.0, Materialise Dental, Leuven, Belgium) and were exported in an excel sheet in order to calculate coronal, apical, depth and angular deviations.

A diagnostic CT scan was performed to evaluate the residual maxillary bone anatomy in order to determine the location of ZI/PI sites using a 3D planning software. The implants’ angulations, positions, and dimensions as well as the inclinations of the multi-
unit-abutments (MUA) were carried out using a dedicated implant surgical software (EZplan Real Guide, NORIS medical).

The ZIs were planned with an extra-sinus path with a lateral upward angulation of 45–60 degrees from the vertical axis. The implant’s apex was positioned to pass through the zygomatic bone in a bi-cortical manner in order to obtain the maximum anchorage. PIs entry points were designed to be 10–12 mm posterior to the tuberosity and the angulation was adjusted to join the pterygoid medial plate.

Once the surgical plan was defined, the data set allowed to design a CT-derived bone supported surgical guide with a novel layout and showed an optimal stability. To do that, the designed guide was exported as a STL (standard triangulation language) file to be fabricated using 3D printing processes.

2.1.1. EZgoma Principle

The EZgoma guide is an apparatus for the placement of zygomatic implants previously planned by a dedicated software. The guide provided two separate supports for two ZIs on one side (Figure 6). Each support had a cylindric form divided into two parts (upper support on the buccal part and lower support on the palatal part). The lower support worked with the upper support creating an efficient system to avoid the bending momentum due to the rotational movement of the bur during drilling, which also allowed the alignment of the burs to the cylindric body.

![Figure 6](image_url)

Figure 6. The 3D printed titanium surgical guide provides the support for the burs. Attention is paid to the supports which are designed in two parts, as upper and lower, in order to allow the surgeon to have a comfortable approach and to avoid a bur’s stop.

2.1.2. EZgoma Procedure

A palatal incision was carried out in the maxillary soft tissues with bilateral vertical posterior releasing incisions. The muco-periosteal flap was elevated to expose the alveolar crest, the piriform aperture, the lateral wall of the maxillary sinus, the infraorbital nerve emergence, the tuber maxilla, the central and the posterior part of the zygomatic complex (Figure 7).
Figure 7. Palatal incision allowed a wide surgical access.

The bone-supported surgical drill guide was placed and fixed with three 1.6 mm diameter mono-cortical osteosynthesis screws. These screws provided a stable fitting of the guide to the bone, preventing any tilting, which is crucial for the success of the guided surgery (Figure 8).

Figure 8. The guide perfectly fitted on the maxillary bone with 3 screws.

2.1.3. Pterygoid Implant Protocol

When pterygoid implants are planned in addition to zygomatic ones, it is recommended to start the procedure with pterygoid implants placement in order to use the implants as anchor pin, in addition to the screw fixation.

The pterygoid osteotomy was performed by a long 2.8 mm diameter drill, used with a reduction spoon placed in a long sleeve defining the planned drilling direction. The marks on the drills were used to check the drilling depth (Figure 9).
Figure 7. Palatal incision allowed a wide surgical access.

The bone-supported surgical drill guide was placed and fixed with three 1.6 mm diameter mono-cortical osteosynthesis screws. These screws provided a stable fitting of the guide to the bone, preventing any tilting, which is crucial for the success of the guided surgery (Figure 8).

Figure 8. The guide perfectly fitted on the maxillary bone with 3 screws.

2.1.3. Pterygoid Implant Protocol

When pterygoid implants are planned in addition to zygomatic ones, it is recommended to start the procedure with pterygoid implants placement in order to use the implants as anchor pin, in addition to the screw fixation.

The pterygoid osteotomy was performed by a long 2.8 mm diameter drill, used with a reduction spoon placed in a long sleeve defining the planned drilling direction. The marks on the drills were used to check the drilling depth (Figure 9).

Figure 9. The first step was the pterygoid implant preparation, performed with the aid of a reduction spoon and a calibrated drill.

The implant was seated by a driver through the guide (Figure 10) until the driver stopped on the sleeve. The planned orientation of the implant was achieved by aligning the hex of the driver with the hex of the sleeve (Figure 11).

Figure 10. The placement of the pterygoid implant increased the guide's stability for the following zygomatic implant site preparations.

Figure 11. Pterygoid implant was placed by an implant mount that allow to position the implant as planned.

2.1.4. Zygomatic Protocol

After the surgical guide was fixed, the implant site preparation continued with a spherical diamond bur (\(\Phi 4.2 \text{ mm} \)) to create a notch in the bone (Figure 12) facilitating the bone approach of the next cylindric diamond bur (Figure 13).

Figure 12. Round diamond bur was used to perform the primary corticotomy.
2.1.4. Zygomatic Protocol

After the surgical guide was fixed, the implant site preparation continued with a spherical diamond bur (φ 4.2 mm) to create a notch in the bone (Figure 12) facilitating the bone approach of the next cylindric diamond bur (Figure 13).

![Figure 12. Round diamond bur was used to perform the primary corticotomy.](image)

The outer wall of the sinus was prepared with cylindric diamond burs, in order to prepare the bone slot until it was adapted to the upper and lower support.

The cylindric diamond bur was used to create a cylindric groove in the lateral wall of the maxillary sinus to enable the drilling tools to complete the osteotomy and to provide adequate bone support to the zygomatic implant. The cylindric diamond bur’s tip was placed between the bone and the upper support of the guide, that worked as a fulcrum for the medial movement of the bur against the sinus lateral wall, that was grinded until the bur was seated on the lower support. (Figure 13).

A 4.2 mm diameter drill was positioned between the guide supports and driven inwards up to a mark on the drill (Figure 14), removing the remaining bone under the upper support to allow a free setting of the following centering spoon.

![Figure 13. The outer wall of the sinus was prepared with cylindric diamond burs, in order to prepare the bone slot until it was adapted to the upper and lower support.](image)
Figure 13. The outer wall of the sinus was prepared with cylindric diamond burs, in order to prepare the bone slot until it was adapted to the upper and lower support. The cylindric diamond bur was used to create a cylindric groove in the lateral wall of the maxillary sinus to enable the drilling tools to complete the osteotomy and to provide adequate bone support to the zygomatic implant. The cylindric diamond bur’s tip was placed between the bone and the upper support of the guide, that worked as a fulcrum for the medial movement of the bur against the sinus lateral wall, that was grinded until the bur was seated on the lower support. (Figure 13).

A 4.2 mm diameter drill was positioned between the guide supports and driven inwards up to a mark on the drill (Figure 14), removing the remaining bone under the upper support to allow a free setting of the following centering spoon.

Figure 14. Centering spoon’s site preparation.

The centering spoon (Figure 15) was placed in order to allow the bone site preparation with a 3 mm internal diameter. A centric drilling is always suggested in order to respect the original planning and to avoid a final implant deviation higher than usual. The drilling depth was determined once the drill was stopped by the spoon sleeve (Figure 16).

Figure 15. Main implant site preparation was carried out with a deepness bur and a reduction spoon.

Figure 16. The deepness bur at the end of its path.
The drill No. 1 was used to finalize the bone preparation, taking care to align the bur with the upper and the lower support (Figure 17). The drilling depth was determined by aligning the planned depth mark on the drill with a reference slot on the guide (Figure 18) (The N. 2 and N. 3 final drills are used only in case of D1 bone).

![Figure 17. Last bur to finalize the implant site. Note that at this point no other tool, including reduction spoon is needed.](image17.png)

![Figure 18. The final drill at the end of the preparation.](image18.png)

A depth probe was inserted into the osteotomy through the guide and the depth of the osteotomy was assessed aligning the planned line on the probe with the mark on the guide (Figure 19).
Figure 19. Depth caliper was used to assess the bone site preparation.

The planned zygomatic implant was screwed into the osteotomy site through the opposite half-sleeve of the guide (Figure 20).

Figure 20. The zygomatic implant was screwed by a dedicated mounter to prevent implant’s deviation.

An implant driver was used to perform the implant’s seating until its final vertical position was aligned with the mark on the guide and the head geometry was helpful to control its final alignment. Moreover, a pin was also used to definitely orientate the prosthetic connection as planned, in order to respect the following correct placement of the selected angulated abutment (Figure 21).
Figure 21. Implant placement was finalized with the aid of a pin to check even if the planned prosthetic connection orientation was achieved.

Finally, the surgical guide was removed simply unscrewing the two fixation screws. The above-mentioned guided approach allowed the placement of the multi-unit-abutment on the implants before the surgical guide was removed (Figures 22 and 23).

Figure 22. Multi-unit-abutment was screwed on the fixture with the surgical guide still in place.
Figure 21. Implant placement was finalized with the aid of a pin to check even if the planned prosthetic connection orientation was achieved.

The above-mentioned guided approach allowed the placement of the multi-unit-abutment on the implants before the surgical guide was removed (Figures 22 and 23).

Figure 22. Multi-unit-abutment was screwed on the fixture with the surgical guide still in place.

Figure 23. Implants and abutments in place confirming the surgical plan.

3. Results

A database was created using Excel (Microsoft, Redmond, WA, USA). Data were evaluated using standard statistical analysis software (version 20.0, Statistical Package for the Social Sciences, IBM Corporation, Armonk, NY, USA).

Descriptive statistics including minimum and maximum values and mean ± SD values were calculated for each variable, and box plots were used to evaluate data outliers. The Shapiro–Wilk test was used to determine whether or not the data conformed to a normal distribution.

The independent-samples t-test was used to identify statistically significant differences in the accuracy of zygomatic implants compared to pterygoid implants and to evaluate differences in the intragroup analysis between implants positioned on the right and the left sides of the maxilla.

In each test, the cut-off for statistical significance was $p \leq 0.05$.

In total, 10 cadavers were used for the study. In each cadaver heads were inserted four zygomatic implants, two for the left and two for the right side, and two pterygoid implants, one for each side (for a total of 40 zygomatic and 20 pterygoid implants).

The mean differences in the platform plane, platform depth, apical plane, apical depth and angle position between the zygomatic and pterygoid implants compared to the virtual implant planning are reported in Table 1 and Figure 24.

Table 1. Mean difference in the platform plane, platform depth, apical plane, apical depth and angle position between zygomatic and pterygoid implants.

<table>
<thead>
<tr>
<th></th>
<th>Zygomatic</th>
<th>Pterygoid</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform plane (mm)</td>
<td>0.76 ± 0.41</td>
<td>0.61 ± 0.28</td>
<td>0.144</td>
</tr>
<tr>
<td>Platform depth (mm)</td>
<td>0.93 ± 1.23</td>
<td>1.35 ± 1.45</td>
<td>0.256</td>
</tr>
<tr>
<td>Apical plane (mm)</td>
<td>1.35 ± 0.78</td>
<td>1.81 ± 1.47</td>
<td>0.213</td>
</tr>
<tr>
<td>Apical depth (mm)</td>
<td>1.07 ± 1.47</td>
<td>1.22 ± 1.44</td>
<td>0.711</td>
</tr>
<tr>
<td>Angle position (°)</td>
<td>1.69 ± 1.12</td>
<td>4.15 ± 3.53</td>
<td>0.006</td>
</tr>
</tbody>
</table>
The independent-samples t-test showed no statistically significant mean difference in the platform plane, platform depth, apical plane, apical depth and a significant mean difference in the angle \((p = 0.006) \) of zygomatic versus pterygoid implants (Table 1).

No difference was found in the accuracy between the left and right side in both zygomatic and pterygoid implants (Table 2).

Table 2. Mean difference in the platform plane, platform depth, apical plane, apical depth and angle position between left and right side in both zygomatic and pterygoid implants.

<table>
<thead>
<tr>
<th></th>
<th>Zygomatic</th>
<th>Pterygoid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left Side</td>
<td>Right Side</td>
</tr>
<tr>
<td>Platform plane (mm)</td>
<td>0.86 ± 0.44</td>
<td>0.67 ± 0.36</td>
</tr>
<tr>
<td>Platform depth (mm)</td>
<td>0.64 ± 0.43</td>
<td>1.17 ± 1.59</td>
</tr>
<tr>
<td>Apical plane (mm)</td>
<td>1.32 ± 0.84</td>
<td>1.38 ± 0.76</td>
</tr>
<tr>
<td>Apical depth (mm)</td>
<td>0.65 ± 0.45</td>
<td>1.41 ± 1.88</td>
</tr>
<tr>
<td>Angle position (°)</td>
<td>1.65 ± 1.20</td>
<td>1.72 ± 1.09</td>
</tr>
</tbody>
</table>
4. Discussion

In order to prevent possible complications of implantology, numerous authors have proposed surgical navigation systems with the support of techniques aimed at increasing precision and decreasing the risks. In this study, an innovative system used for a safe placement of zygomatic and pterygoid implants is reported. Each implant was carefully planned, starting from a virtual plan, based on a 3-D CT-scan, using a specific software. The surgeries were carried out by innovative customized 3-D printed surgical guides and a dedicated surgical kit.

The free hand extra-sinus drilling protocol for zygomatic implants requires a three-dimensional visualization of the anatomy. The first step is to define the position of the multi-unit-abutment that have to be attached to the zygomatic implant on the alveolar ridge. Tracking a line connecting the entry point of the implant at the bone crest level with the zygomatic bone, it is possible to define the path of the bone preparation. Zygomatic and pterygoid implant insertions can be affected by many risks occurring during their planning and performing. Clear setting of the entrance point, trajectory path, and exit point of the implants, combined with a successful transition from the implant planning to the surgical phase, are all crucial factors [17,18,40].

This study tested a bone-supported technique that consists of a single sintered titanium template, placed during all the surgical procedures and clinically validated by the data emerging from the overlapping of the pre-operative planning with the post-operative CT of the specimens’ heads (Tables 1 and 2).

The success of a guided procedure mostly depends on the precise position of the guide on the hard or soft tissues. Particularly, in cases of severe atrophic maxilla, it might be quite difficult to maintain the stability of the surgical guide throughout the whole drilling procedure [42]. A screw-retained surgical guide, fabricated with CAD-CAM (computer-aided design and computer aided manufacturing) technology, seems to make it feasible to ensure the accuracy and the safety of the final results [36,37,39,40]. The guide thus constructed was placed on the anterolateral wall of the maxilla and fixed to the bone surface by means of 3 screws with a diameter of 1.6 mm and was removed after implants and multi-unit-abutments were correctly placed. No additional nor more aggressive procedures were needed in terms of surgical access to the maxillary sinus.

A surgical guide for the placement of zygomatic implants fabricated in the same manner as conventional dental implants is considered less reliable, as these implants are significantly longer (35–60 mm) compared to conventional dental implants. Due to this fact, a slight error in the drill path direction and in the angular deviation can significantly alter the trajectory, the positions of the apex and the divergence at the exit point. In the event of deviations in zygomatic implant placement, the consequences can be much more serious than the complications of conventional implantology [37,41,42].

The use of the bone tissue as a supporting base has been considered mandatory, as well as the use of a rigid structural material as titanium, for the guide manufacturing, as both make it feasible to transfer the plan with absolute precision to the implant site. Moreover, due to the path of these extra-sinus long fixtures, a mucosal-supported guide cannot be feasible.

The guided templates for conventional implants, even the most advanced, provide occlusal sleeves to guide burs during osteotomy. The length of the above-mentioned sleeves usually ranges from 4 to 6 mm and they are suitable for implants within 15 mm. Besides, a 35 mm to 60 mm zygomatic sleeve would be exposed to the consistent risk that the bur may get stuck and may reduce handling.

The EZgoma inverted support system overcomes these difficulties by reducing the overall dimensions of the device, as it is based on a single bone-supported template consisting of two open, opposite half-sleeves, connected by a double track, in which it is possible to house the drills with extreme precision with a standard handpiece for low speed implantology. This is unconventional if compared with free hand zygomatic...
implants placement, which has usually been proposed to be performed by using a straight head handpiece.

The suggested surgical guide design made the entire guided surgery, as well as implant and abutment placement according to the planned project to support an immediate loading prosthesis, easier. In order to test implant deviations, the planned zygomatic and pterygoid implants have been saved as SLT files and compared with the ones obtained from the post-operative CT-scan. As shown in Table 1, both zygomatic and pterygoid implant deviations resulted in values comparable with those published for conventionally guided implants and no statistically significant differences have been reported [39,43,44].

This present cadaver study was performed in an anatomical laboratory environment, however in real life, clinicians perform zygomatic implant surgery on patients with extremely atrophic maxillary bone. Management of oral rehabilitation in such patients can be quite demanding, and one of the key factors is the careful follow-up period. The marginal bone resorption and changes in bone levels must be evaluated at least every two years. Especially for the specific extra-sinus placement that is typical of the presented surgical protocol, peri-implant mucosal situation must be additionally controlled. For this purpose, it is mandatory to annually remove the prostheses to check the oral hygiene status of prosthesis and the status of the abutments that are placed over the zygomatic implants. The radiographic assessment of the on-going peri-implant vertical bone loss after implant placement is considered as an essential issue for clinicians. Cosola et al., proposed a method of standardization of two-dimensional radiographs that can allow the clinicians to minimize the patient’s exposure to ionizing radiations for the measurement of marginal bone levels around dental implants [45]. Such methods can be critical in order to evaluate the bone changes around the zygomatic implants at the follow-up period and have a great impact on the long-term successful results.

In the present work, as the implants have been planned both on the right and the left side of the involved heads, a comparative analysis of the side-related deviations has been carried out. No statistically significant differences have been observed in terms of accuracy between the left and right side either in zygomatic or pterygoid implants. Since all the implants have been placed by the unexperienced surgeons involved in the clinical training on cadaver heads, the accuracy results gave evidence of the safety of this guided procedure.

In cases of guided implant surgery, patients with limited arch space can be a challenging situation, especially for zygomatic implant insertions. In such cases, various protocols were introduced in literature as a solution. De Santis et al., in a clinical study evaluated a novel radiologic protocol and a new occlusal radiographic index that can give the clinician the possibility of identifying patients with limited inter-arch space. As a result, the new radiological occlusal index made with condensation silicone (Sandwich Index) proved to be effective in reproducing the maxillary forced maximum opening position during the initial planning phase. Additionally, their method prevented errors in the inclusion or exclusion of patients suitable for NobelGuide treatment [46]. The EZgoma guide system represented in this study, is a suitable method even for patients with limited mouth opening. This guide system is fixed unilaterally, which is easy to use.

The proposed EZgoma method takes several advantages of conventional sleeve guides. The two opposite supports of the guide (Figure 1), the coronal one located palatal to the alveolar ridge and the apical one placed buccally, at the entry point of the zygomatic bone and on the lateral maxillary wall of the sinus, make easier the entire surgical procedure as they leave a certain degree of freedom to the surgeon to prepare the implant site. Moreover, there is a prosthetic advantage because of the extra-sinus implant placement, as it allows a better and natural emergence profile of the future prosthesis, avoiding an uncomfortable larger palatal volume.
5. Conclusions

Zygomatic and pterygoid implants have been suggested as a solution to rehabilitate severely resorbed maxillary bone. The proposed guided zygomatic and pterygoid surgery seems to be an easier and safer method when compared with the free hand approach. Further research on the accuracy of the entire procedure is mandatory in order to avoid critical surgical complications, which can involve accidents to the surrounding anatomy. This research, which utilized a new surgical guide design, in terms of accuracy between planned and placed zygomatic and pterygoid implants, resulted in very small deviations, comparable with the ones obtained with conventional surgical guides.

Zygomatic and pterygoid implant insertions represent an effective, quicker and less invasive treatment method in indicated cases, as compared to massive bone augmentation. According to the results of this study, in terms of accuracy and with respect to the presurgical planning, the procedure is feasible with successful results even if performed by unexperienced surgeons. However, the simplification of the surgery and the reduction of the invasiveness should be improved.

One of the limitations of this study is the fact that it is a cadaver study.

Author Contributions: Conceptualization, F.G. (Francesco Grecchi), E.G. and L.V.S.; methodology, F.G. (Francesco Grecchi) and L.V.S.; software, R.S. and Z.M.; validation, F.G. (Francesco Grecchi), F.G. (Fabrizio Grivetto) and N.P.; formal analysis, L.V.S. and N.P.; investigation, F.G. (Francesco Grecchi) and F.G. (Fabrizio Grivetto); resources, V.D.L. and F.D.A.; data curation, N.P.; writing—original draft preparation, A.F., F.G. (Funda Goker) and E.G.; writing—review and editing, A.F., F.G. (Funda Goker) and E.G.; supervision, M.D.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Nicola’s Foundation, ICLO (Prot. Nr. 08, 5 May 2021).

Informed Consent Statement: Informed consent to use the body for study, training and scientific research, was obtained from all the alive subjects (donors) involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

Article

Three-Dimensional Technology Applications in Maxillofacial Reconstructive Surgery: Current Surgical Implications

Yasmin Ghantous 1,†, Aysar Nashef 1,*,†, Aladdin Mohanna 1,† and Imad Abu-El-naaj 1,2

1 Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center Poriya, Tiberias 158001, Israel; yasmen.ghantous@gmail.com (Y.G.); ma.aladdin@gmail.com (A.M.); iabu@poria.health.gov.il (I.A.-E.-n.)
2 The Azrieli Faculty of Medicine, Bar Illan University, 8 Henrietta Szold St, Safed 1310000, Israel
* Correspondence: dr.aysarn@gmail.com
† Equal contribution.

Received: 16 November 2020; Accepted: 14 December 2020; Published: 16 December 2020

Abstract: Defects in the oral and maxillofacial (OMF) complex may lead to functional and esthetic impairment, aspiration, speech difficulty, and reduced quality of life. Reconstruction of such defects is considered one of the most challenging procedures in head and neck surgery. Transfer of different auto-grafts is still considered as the “gold standard” of regenerative and reconstructive procedures for OMF defects. However, harvesting of these grafts can lead to many complications including donor-site morbidity, extending of surgical time, incomplete healing of the donor site and others. Three-dimensional (3D) printing technology is an innovative technique that allows the fabrication of personalized implants and scaffolds that fit the precise anatomy of an individual’s defect and, therefore, has attracted significant attention during the last few decades, especially among head and neck surgeons. Here we discuss the most relevant applications of the 3D printing technology in the oral and maxillofacial surgery field. We further show different clinical examples of patients who were treated at our institute using the 3D technology and discuss the indications, different technologies, complications, and their clinical outcomes. We demonstrate that 3D technology may provide a powerful tool used for reconstruction of various OMF defects, enabling optimal clinical results in the suitable cases.

Keywords: three dimensional printing; 3D printing; oral and maxillofacial reconstruction; 3D printing in the cranio-maxillofacial surgery

1. Introduction

The repair of large oral and maxillofacial (OMF) defects, secondary to tumor, trauma, or congenital disease, employs a multidisciplinary approach and represents one of the most difficult and challenging areas in head and neck surgery. The goals of craniofacial reconstruction include, mainly, the restoration of complex functional, anatomic, and aesthetic characteristics, with important respect to the craniofacial growth in the growing patients. To this end, autologous bone grafts remain the gold standard in hard-tissue reconstructive surgery owing to their osteoinductive and osteoconductive properties, osteogenic properties and the potential for continuous growth of particular autologous grafts at the defect sites (i.e., costochondral graft) [1,2]. Moreover, in defects with extensive hard and soft tissue loss in the OMF complex, loco-regional flaps and microvascular free tissue transfer is still considered as the superior reconstructive option [3,4]. However, despite high success rates of both vascularized and non-vascularized grafts, such reconstructive options still have critical disadvantages including, mainly, donor-site morbidity, availability in limited quantities, prolonged anesthesia time, unpredictability of...
bone graft resorption, total flap loss, and the need to manually sculpt the graft into the shape of the defect site [4–6].

The use of biomaterials for bone regeneration in large OMF defects is promising, however, those materials must meet specific characteristics in order to regenerate new and functional bone; for example, biocompatibility, porosity, morphology and inter-connectivity, osteoconductivity/osteoinductivity, biodegradability and several specific mechanical characteristic that enable suitable handling and growing. Unfortunately, there are few biomaterials that fit those requirements, especially for large defects.

Three-dimensional (3D) printing is a novel technique that has evolved over the past three decades and has the potential to revolutionize the field of reconstructive medicine in general [7,8]. Since its first description by Hideo Kodama in 1981 [9], 3D technology has matured and many more sophisticated different printers than the original machines currently exist, allowing for application in a range of fields including aerospace, engineering, consumer products, arts, food industry, education, manufacturing, and medicine [8,10]. Three-dimensional printing is also defined as additive manufacturing (AM), and this technique uses metals, ceramics, and plastic material to produce three-dimensional (3D) objects for the usage in different disciplines, including medical application [11]. The AM process is defined by the International Organization for Standardization (ISO) and American Society for Testing and Materials (ASTM) as the “process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive and formative manufacturing methodologies”. [12]. The processes encompassed in AM are the 3D analog of the very common 2D digital printers; therefore, AM is also commonly referred to as 3D printing. AM has gained many definitions over the last 30 years, such as direct digital manufacturing, additive layer manufacturing, additive fabrication, additive processes, free-formed fabrication, solid free-formed fabrication, rapid manufacturing, and rapid prototyping [13]. It is noteworthy that, in contrast to the conventional manufacturing processes (i.e., subtractive and formative manufacturing processes), AM technology has the ability to deal and create complex geometric products [14], with a high degree of functionality [13] and low cost of manufacturing [15]. Thus, AM is considered as the ideal technology for producing unique 3D objects that are manufactured in low volumes that are generally used for medical and dental applications [16–18].

In this review, we discuss the three principal applications of AM process that are relevant to oral and maxillofacial surgery including: (i) the use of 3D printing to generate 3D models for surgical planning and education; (ii) the use of 3D printing technology for the production of patient-specific implants (PSI); and (iii) the bio printing of organic structures. We provide different clinical cases where AM process is applied for treatment planning, surgical stimulation, intraoperative guidance and printing of PSIs for reconstruction of OMF defects. We also provide an overview of the printing technologies that are most commonly used for oral and maxillofacial surgery applications.

2. Three-Dimensional (3D) Printing Techniques

In the medical field, and particularly, in the oral and the maxillofacial reconstructive surgery, there are several variants of AM processes and printers available today [8,10,12,19]. However, all AM process share the same concept of work-flow which can be summarized as follows [11,15]: the process begins with capturing anatomical scans using imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) scans; then, a computer aided design (CAD) model is processed and optimized using specific computer techniques. Then, the CAD model is transformed into a standard triangulation or tessellation language (STL) file and imported into an AM setup. Each AM model, is formatted in the STL to a geometric shape, and sliced into thin layers and the movement of the depositing or fusing unit (“printing head”), and substrate (“printing platform”), as well as other parameters are programmed by specialized software. Consequently, the AM machine constructs the 3D model layer-by-layer according to a specific and precise programmed parameters, the built object is removed from the building platform and followed by post-processing procedures (such as polishing, coating, or thermal treatment) to obtain a functional part.
2.1. Stereolithography

In stereolithography (SLA), the 3D model is fabricated in a series of layers that correspond to the axial image slices of the CT scan. The technology is classified as a vat photopolymerisation AM process in which an ultraviolet (UV) light is projected on a bath of curable photopolymeriser resin. After the first layer is built, it either moves, gradually, out of the bath or descends depending on the production configuration, and the focused energy beam renders the next layer, according. Typically, each layer is polymerized at a thickness of 0.05–0.15 mm. This process is continued until each corresponding slice of the CT image is duplicated in the resin model. In medical field, and in particular in OMF surgery, the generated SLA models are, mostly, prepared by acrylate or epoxy resin, and used for surgical guides and templates, as well as for training residents, designing soft tissue incisions, surgical resection margins, assessing of bony defects for grafting, adaptation and pre-bending of reconstruction plates, and fabrication of custom prostheses. The accuracy of these printed objects in resembling the human anatomy as well as its utility in the perioperative management for improving the predictability of treatment of maxillofacial defects secondary to traumatic or pathologic conditions have been confirmed in numerous reports [20–27].

2.2. Laser Sintering

Laser sintering (LS) and related techniques (i.e., selective laser sintering, direct metal laser sintering, laser melting and others) are classified as a powder bed fusion process of AM that is currently employed, widely, in medical disciplines. The process is based on the same principle of layer-by-layer AM. The system normally consists of a laser, an automatic powder layering apparatus, a computer system for process control and some accessorial mechanisms such as gas protection systems and powder bed preheating systems. The function of a LS system employs a focusing of a high-powered energy laser into a powdered substrate, causing a fusion of the substrate into the desired shape. Once a layer of substrate has been sintered, a new layer of substrate is added on the top of the developing construct, and energy is applied again [28]. Different types of laser are used for this purpose (including CO₂, Nd:YAG, fiber lasers, disc lasers and others) and selected based on to the laser absorptivity of the specific material used and the operative metallurgical mechanism of the powder densification [29,30]. The process is include firstly a leveling and fixation of the substrate on the building platform, followed by deposition of a thin layer of loose powder (normally ~100 µm) on the substrate. Subsequently, a laser beam scans the powder bed surface to form a layer according to the CAD data. The procedure is repeated, in a layer-by-layer manner, until a complete highly accurate and nearly a full density functional part is produced [28]. This technology has traditionally been used in non-biological printing, but also for biological substrates [8]. Indeed, the LS technologies have changed the workflow for various surgical procedures among many disciplines within the OMF surgery field during the last years. The availability of this process provided us with the ability to fabricate a wide range of objects including surgical osteotomy guides with high accuracy, custom-made titanium orbital floors, custom made grids, sub-periosteal dental implants, custom-made cranial plates and other parts that perfectly adapt to the specific anatomical requirements of patients [31–39].

2.3. Extrusion Printing

Extrusion printing is another widely available process for 3D printing of biological and non-biological materials and considered among the most widely used AM processes, especially when dealing with polymers and thermoplastic composites. This process includes, mainly, the fused deposition modeling (FDM) technique and the fused filament fabrication (FFF). The basic principle of material extrusion additive technology involves the loading and liquefaction of a printed material. The material moves through a nozzle or orifice by applying a pneumatic pressure, followed by plotting of the liquefied material according to a pre-defined path in a controlled manner, and layer-by-layer bonding of the material to itself or a secondary build material to form a coherent solid structure.
Once a layer is formed, the build platform moves down or the extrusion head moves up, and a new layer of material is deposited and adhered onto the previous layer. In contrast to other AM techniques, the extrusion printing process allows for multi-material deposition due to the possibility of adding one or more extrusion units simultaneously and can be used for various thermoplastics for the same product [40,41]. Depending on the type of extruder used, one can classify material extrusion additive manufacturing into main three different types; plunger-based, filament-based, and screw-based [42]. Indeed, material extrusion of filaments was first patented by the company Stratasys and commercialized as fused deposition modeling (FDM) [43]. This process of AM is popular in the medical field due to its safe and simple fabrication process because of no powders, lasers, solvents, nor volatile compounds are used, the low cost of the equipment, and the availability of a great variety of filaments for printing. During the last few years, the use of FDM technology for OMF reconstructive surgery was restricted mainly to manufacturing surgical guides for preoperative planning of complex surgical treatments. However, recently the technology was successfully used to print allograft materials, named polyetheretherketone (PEEK), which has emerged as an attractive option for producing PSI owing to its excellent combination of high-temperature performance, chemical resistance, fatigue resistance, lightweight, high yield strength, stiffness, and durability [44,45].

3. Three-Dimensional Printing Materials

The fabrication process of each 3D printing includes external heat, light, laser and other energy sources. The mechanical characteristics of the different materials and the variable chemistry enable it to react optimistically to the different external source of energy and to transform to the desired shape. Nowadays, the advanced 3D printing technologies enable shape transforming of the materials, layer by layer, in response to the external energy source. There are several material states available, such as powder, pellets, resin, and granules, while the specific material type and characteristics are developed in accordance with the expanded development of 3D manufacturing.

The most popular AM materials are plastic nylon, and polyamide, since both are strong and flexible, and basically white in color. They can be used in two forms, powder and filament. Powder is used mainly in the sintering process, and filament is mainly used in FDM [46]. If a different range of color is desired, Acrylonitrile butadiene styrene (ABS) could present a suitable choice, ABS is a strong, filament plastic material and it is available in a wide range of colors. Polylactic acid (PLA) is also a plastic material available both in filament and resin forms, in addition it is available in several colors, this material can be used for the FDM process, where in resin form it can be used for digital light processing, the main drawback of this material being its rigidity, and non-malleability. Alumide, is a powder format plastic material that is used for sintering, this material is formed by combining Polyamide in its powder format with powdered aluminum. Ceramics are relatively a new group of 3D materials that have proved to be suitable for several medical applications, however, the printed ceramic objects should undergo post-processing firing and glazing to achieve a smooth surface area [46,47]. Another popular group of materials are metals, while the most common metal composites used are aluminum, titanium, and cobalt derivatives. Stainless steel is one the metal materials most often used in 3D printing due to its strength, it is naturally silver, but it can be blended with other materials to gain a variety of other properties. Research is being undertaken to evaluate the use of bio materials for 3D printing for medical applications.

Simple direct media layer (SDL) process-based printers provide a professional 3D printing technique, and this technique enables the use paper-based 3D printers; such materials have many advantages, they are safe, easily recycled and require no post processing [47].

4. Clinical Examples of Additive Manufacturing (AM) Use in Oral and Maxillofacial Surgery

The following section of the paper is focusing on clinical case reports that were treated at our department with emphasis on the indications for use, material of choice, intra-operative and post-operative complications. The demographic characteristics, treatment indications, and clinical
outcome of patients who were treated with the 3D application at our institute between 2015–2020 were reviewed, retrospectively. The institutional review board of Peda-Poria hospital approved the study protocol. Briefly, computed tomography (CT) scans were obtained for these patients. Images from these modalities were saved in a digital imaging and communications in medicine (DICOM) format. Subsequently, CAD software were used to create a virtual 3D prototype, based on the surgery plan. Standard tessellation Language (STL) format was then generated to allow 3D printing and deposition of the material layer by layer to achieve the final 3D object. Depending on the application, an appropriate printing technique and printer was selected (i.e., SLA, SLS etc...). Finally, final post printing modification of the printed part was performed [8,10,12,19].

A total of 16 patients were treated at our department between 2015 and 2020, using the AM process, and are summarized in Table 1. The mean age of patients was 45.5 years (range 19–80 years). The male to female ratio was 8:8. The technology was mostly applied for the trauma and post-trauma surgery discipline (7/16; 44% of cases), followed by pre-prosthetics surgery discipline (5 out of 16, 31%), oncologic surgery discipline (2 out of 16; 13%), one case of temporomandibular joint (TMJ) surgery and one case for facial deformity correction surgery. PSI was the most printed object (10 out of 16) in our case series and were used mainly for floor of orbit reconstruction (4 out of 10 cases; 40%). Titanium material was the most used material in 3D printing with 69% of cases (11 out of 16 cases). PEEK material was used in three cases for PSI printing as a reconstruction approach of the floor of the orbit, nasal bone and temporal and frontal bone reconstruction. Intraoperative complications were noted among three cases (19%- two PSI and one surgical cutting guide) and were to include mainly loss of accurate fitting of the printed object; in these cases, minimal adjustment of the printed part was performed intra-operatively allowing for acceptable fitting. With regard to post-operative complications, one case has showed extensive post-operative edema followed by exposure of PSI and development of acute infection, this patient was retreated successfully with a free flap fibula reconstruction. In one patient, who was treated for nasal bone reconstruction, this showed an insufficient esthetic of nasal contour. As expected, almost all of the cases with PSI showed some degree of postoperative edema.
Table 1. List of the 16 cases that were treated at our department between 2015–2020 using three-dimensional technology including demographic data, surgical discipline, site of surgery, the printed objects, material of choice, intra-operative and post-operative complications.

<table>
<thead>
<tr>
<th>Case Nu.</th>
<th>Age</th>
<th>Sex</th>
<th>Surgical Disciplines</th>
<th>Site</th>
<th>Printed Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>F</td>
<td>Trauma</td>
<td>Mandible</td>
<td>SLA model for pre-bending of reconstruction plate</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>M</td>
<td>Oncology</td>
<td>Mandible</td>
<td>PSI for of mandibular body reconstruction including dental implants</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>M</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for nasal reconstruction</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>M</td>
<td>Oncology</td>
<td>Mandible</td>
<td>PSI of mandible body with ramus and condyle reconstruction</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>M</td>
<td>Trauma</td>
<td>Nose</td>
<td>PSI for nasal reconstruction</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>M</td>
<td>TMJ Ankylosis</td>
<td>TMJ</td>
<td>PSI for ramus and condyle reconstruction</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>M</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for temporary frontal reconstruction</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>F</td>
<td>Trauma</td>
<td>Orbital cavity, frontal bone and temporal bone</td>
<td>PSI for temporary frontal reconstruction</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>M</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for nasal reconstruction</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>F</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for nasal reconstruction</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>F</td>
<td>Facial deformity</td>
<td>Mandible</td>
<td>Surgical cutting guide of mandibular lower border</td>
</tr>
<tr>
<td>12</td>
<td>44</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Mandible</td>
<td>PSI of sub-periostal dental implant</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
</tr>
<tr>
<td>14</td>
<td>71</td>
<td>M</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
</tr>
<tr>
<td>15</td>
<td>66</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
</tr>
<tr>
<td>16</td>
<td>56</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
</tr>
</tbody>
</table>
Using the 3D technology including demographic data, surgical discipline, site of complications. IO: intra-operative, PO: post-operative, TMJ: temporomandibular joint.

<table>
<thead>
<tr>
<th>Case Nu.</th>
<th>Age</th>
<th>Sex</th>
<th>Surgical Discipline</th>
<th>Site</th>
<th>Printed Object</th>
<th>Material</th>
<th>IO. Complication</th>
<th>PO. Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>F</td>
<td>Trauma</td>
<td>Mandible</td>
<td>SLA model for pre-bending of reconstruction plate</td>
<td>Resin</td>
<td>–</td>
<td>Mild edema</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>M</td>
<td>Oncology</td>
<td>Mandible</td>
<td>PSI for mandibular body reconstruction including dental implants and condyle basal bone reconstruction</td>
<td>Titanium</td>
<td>–</td>
<td>Severe edema, exposure of implant and infection</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>M</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for floor of orbit reconstruction</td>
<td>Titanium</td>
<td>–</td>
<td>Mild edema</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>M</td>
<td>Oncology</td>
<td>Mandible</td>
<td>PSI of mandibular body with ramus and condyle</td>
<td>Titanium</td>
<td>–</td>
<td>Moderate edema</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>M</td>
<td>Trauma</td>
<td>Nose</td>
<td>PSI for nasal bone reconstruction</td>
<td>PEEK</td>
<td>–</td>
<td>Edema and improper contour</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>M</td>
<td>TMJ Ankylosis</td>
<td>TMJ</td>
<td>PSI for ramus and condyle reconstruction</td>
<td>Titanium</td>
<td>–</td>
<td>Mild edema</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>M</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for floor of orbit reconstruction</td>
<td>Titanium</td>
<td>–</td>
<td>Mild peri-orbital edema</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>F</td>
<td>Trauma</td>
<td>Orbital cavity, frontal bone and temporal bone</td>
<td>PSI for temporal and frontal bone reconstruction</td>
<td>PEEK</td>
<td>Loss of accurate fitting</td>
<td>Moderate peri-orbital edema</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>M</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for floor of orbit reconstruction</td>
<td>PEEK</td>
<td>–</td>
<td>Mild edema</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>F</td>
<td>Trauma</td>
<td>Orbit</td>
<td>PSI for floor of orbit reconstruction</td>
<td>Titanium</td>
<td>Loss of accurate fitting</td>
<td>Mild edema</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>F</td>
<td>Facial deformity</td>
<td>Mandible</td>
<td>Surgical cutting guide of mandibular lower border</td>
<td>Resin</td>
<td>–</td>
<td>Loss of accurate fitting</td>
</tr>
<tr>
<td>12</td>
<td>44</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Mandible</td>
<td>PSI of sub-periostal dental implant</td>
<td>Titanium</td>
<td>–</td>
<td>Mild edema</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
<td>Titanium</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>71</td>
<td>M</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
<td>Titanium</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>66</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
<td>Titanium</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>56</td>
<td>F</td>
<td>Pre-prosthetics</td>
<td>Maxilla</td>
<td>Surgical guide stent</td>
<td>Titanium</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
5. AM Process in Virtual Surgical Treatment Planning, Surgical Stimulation and Education

SLA is a valuable adjunct to traditional methods of treatment planning and surgical stimulation for reconstruction following resection of tumors, developmental abnormalities, or trauma reconstruction. In practice, SLA aids in patient education, clarification of diagnoses, and improving treatment planning. These models allow case-specific surgical simulation and are used as a template for modification of bone plates or the fabrication of implants, which may improve the workup and operative phases and can enhance the surgical treatment [20]. Here, we present a 33-year-old woman who was referred to our institution for evaluation and treatment plan 8 years after a gunshot wound injury (GSW) to her right mandible (Figure 1). She was treated by other surgeons with bone plates 8 years ago, but infection developed at the surgery site and a fistula was noted. Her first management included the removal of the infected plate and a wound closure. In addition, because of a large defect in her mandible body, the patient elected to undergo reconstruction using bone plates with subsequent bone graft. A SLA model was constructed to pre-bend the bone plates in order to re-create this patient’s pre-injury bony contour and allow for adequate mandible strength. Prior to surgery, a mandibular reconstruction plate was prebent using the printed SLA model as a reference and screw placement was also planned, as well as screw lengths, which were recorded by measuring the thickness of the model at each plate hole. The final post-operative result showed adequate reconstruction of facial contours and adequate facial symmetry.

![Figure 1.](image)

Figure 1. (A) Panoramic radiograph showing right mandibular defect with the old bone plate. (B) Stereolithographic (SLA) model and the prebent reconstruction plate. (C) Post-operative panoramic radiograph showing the installed reconstruction plate.

5.1. AM for Manufacturing of Surgical Guides for Zygomatic Implants Insertion

One of the most printed 3D objects in the OMF surgery are surgical guides that are designed to facilitate the orientation and execution of drillings, permitting a correct dental implant placement and angulation, as predicted in preoperative planning [48–50]. Here, we show a 56-year-old female patient who was referred to our clinic because of severely atrophic posterior mandible and maxilla (Figure 2). The treatment plan included placing two conventional, four zygomatic and two pterygoid implants with immediate loading principle. Mandibular prosthesis was planned with five implant
supported fixed partial denture. Indeed, zygomatic and pterygoid implant implants have become a predictable treatment modality for the rehabilitation of the severely atrophic maxilla [49]. However, due to different anatomic variations, proximity to vital anatomic structures and limited intraoperative visibility, the placement of such implants can be a challenging procedure and may ultimately lead to postoperative surgical and prosthetic complications [51]. A prosthetically driven preoperative planning was performed and a 3D metal drill guide was fabricated and used to allow full control of the accurate location and angulation of the implants.

Figure 2. (A,B) Pre-operative panoramic and clinical view of partially edentulous atrophic posterior maxilla and maxilla. (C) Implants planned based on the prosthetic needs. (D) Cutting guide for alveoloplasty before implants placement. (E) The installation of the created surgical guide. (F) Implant osteotomy guided by the surgical guide. (G) Post-operative panoramic view showed the implants opposition as planed preoperatively.

5.2. AM for of Pre-Prosthetics Patient-Specific Implant (PSI) Manufacturing

Endosseous dental implants provide a highly predictable solution for the prosthetic rehabilitation of partially and totally edentulous patients, with high rates of survival and success in the medium and long terms. Insertion of such implants requires the existence of adequate quantity (volume) and quality (density) of bone at the surgical site [50]. Several surgical technique have been proposed to restore bone volume to a level that allows the proper implant placement in cases of patients with severe bone atrophy, including inlay/inlay bone grating [52,53], guided bone regeneration (GBR) with resorbable or non-resorbable membranes [54,55], alveolar ridge split, distraction osteogenesis [56,57], and maxillary sinus augmentation. However, theses surgical techniques are complex and can have a rather high percentage of complications. The new direct metal laser sintering techniques available today provide the ability to fabricate custom-made implants [56]. Briefly, a subperiosteal implant is a type of dental implant that is placed between the periosteum and the residual alveolar bone [58]. It usually has two to four trans-mucosal elements projecting through the mucosa into the oral cavity, connecting the implant to the prosthesis. Here, we show an example of a patient with left posterior severe atrophic mandible referred to our clinic for evaluation and a treatment plan for a pre-prosthetics solution (Figure 3). Accurate impressions of the arches were taken and a diagnostic wax-up was performed in order to better understand the prosthetic needs. A sub-periosteal implant was designed virtually, based on the prosthetics needs. The customized implant was produced with holes for the fixing screws and the integral abutments for the support of the cemented fixed prosthetic rehabilitation.
Figure 3. (A) Preoperative Cone beam computed tomography (CBCT) panoramic showed posterior edentulous mandible. (B) Pre-surgical planning and modeling of the sub-periosteal implant. (C) One week after placement of the sub-periosteal implant shows proper healing. (D) One week after implant coverage and installation of dental healing caps. (E,F) Postoperative panoramic view showed the sub-periosteal implant with and without the final dental rehabilitation.

5.3. AM for PSI Manufacturing for Delayed Correction of Post-Traumatic Defects

Orbital fractures is a commonly occurring facial bone fractures and clinically important, as they may cause serious complications such as diplopia, extraocular movement limitation, and enophthalmos., resulting in loss of an aesthetically pleasing appearance [59]. A 19-year-old male was referred to our medical center for evaluation and surgical management of injuries sustained 8 month prior, secondary to a gunshot wound injury (GSW) to the right face (Figure 4). Based on his medical history, the first management of his injury included closure of soft tissue on a significant right infraorbital laceration. Upon initial presentation at our clinic, a clinical examination revealed, facial asymmetry, significant right-sided enophthalmos, cicatricial ectropion and a sensation distribution at the infra-orbital region. Based on a CT scan, a significant avulsed bony injury of his right infraorbital rim and orbital floor was observed. Since the left orbit was not affected, a virtual 3D prototype was designed based on anatomy mirroring of the left orbit. A 3D custom-made implant was created and used to reconstruct the orbital rim and orbital floor. The final result shows a restoration of facial form and contour, with good symmetry and correction of enophthalmos.

5.4. AM for Temporomandibular Joint (TMJ) Reconstruction Surgery Due to Oncologic Resection

Metastatic lesions to the mandible and oral cavity are rare, compromising less than 1% of all malignancy [60]. Here we show a 64-year-old patient with a history of lung signet cell carcinoma that was resected two months prior to his presentation at our clinic (Figure 5). The patient was referred to our institute because of an intra-bony lesion that was noted, radiologically, in his right mandibular ramus. Incisional biopsy was taken from the lesion and metastases from the primary tumor was confirmed, histologically. Resection of the metastasis was planned after discussion with his oncologist. Resection of the tumor required removal of the condyle, resulting in loss of the TMJ but with no articular disc involvement. In this case, a 3D SLA template surgical guide was prepared and used for accurate margins of tumor resection. After resection, a custom metal implant was placed using specific screws. Excellent functional and esthetical results were noted during his follow-up.
Surgical resection with microscopically clear margins of the primary tumor and prophylactic or therapeutic clearance of the neck lymph nodes, followed by various reconstructive approaches, remains the fundamental treatment for Oral Squamous Cell Carcinoma (OSCC) with adjuvant therapy reserved for high-risk disease [62–66]. Here, we present an example of use of 3D approach for reconstruction large mandibular defect following resection of squamous cell carcinoma (SCC) of oral cavity is a fatal disease caused by complex interactions between environmental, genomic and epigenetic alterations [61].

Figure 4. (A) A clinical view shows significant right-sided enophthalmos, cicatricial ectropion. (B) A preoperative coronal computed tomography (CT) scan shows the defect of the right infraorbital rim. (C) Pre-operative 3D planning. (D) Individual custom reconstruction implant. (E) A post-operative coronal CT scan shows the position of the right infraorbital rim. (F) Postoperative implant position. (G) Clinical view shows an accepted postoperative esthetic result.

Figure 5. (A) A pre-operative 3D CT show the position and dimensions of the metastatic lesion. (B) 3D Planning including virtual removal of tumor and the virtual construction of the right temporomandibular joint (TMJ). (C) 3D printed stereolitic model and metal implant after virtual removal of tumor in the right mandibular ramus. (D) The use of the cutting guide for accurate resection based on virtual cutting plan. (E) Removal of the tumor. (F) The placement of the printed TMJ implant. (G) Postoperative CT shows the accurate position of the TMJ implant.

5.5. AM for Producing PSI for Reconstruction of Large Mandibular Defect after Tumor Resection

Squamous cell carcinoma (SCC) of oral cavity is a fatal disease caused by complex interactions between environmental, genomic and epigenetic alterations [61]. Surgical resection with microscopically clear margins of the primary tumor and prophylactic or therapeutic clearance of the neck lymph nodes, followed by various reconstructive approaches, remains the fundamental treatment for Oral Squamous Cell Carcinoma (OSCC) with adjuvant therapy reserved for high-risk disease [62–66]. Here, we present an example of use of 3D approach for reconstruction large mandibular defect following resection of...
OSCC in the right mandibular body and angle. An 80-year-old man was referred to our institute for evaluation and a treatment plan due to lesion at his right mandible (Figure 6). An incisional biopsy from the lesion confirmed a diagnosis of SCC of the right mandible. A resection of the primary tumor with clear margins was performed and a reconstruction using patient specific plate was placed. The 3D reconstruction plate was planned to include two trans-mucosal implants for subsequent dental rehabilitation. However, this implant failed, and acute infection developed in conjunction with oral and skin fistula. This patient was re-treated, successfully, with free flap fibula reconstruction.

Figure 6. (A) A clinical view shows the squamous cell carcinoma (SCC) lesion on at the right posterior mandible. (B) A pre-operative panoramic view of the mandible. (C) The 3D reconstruction implant of the mandible. (D) Post-operative panoramic view shows the implanted reconstruction plate. (E) one week after the placement of the reconstruction plate shows the trans-mucosal components of the plate. (F) clinical view shows the development of postoperative infection with soft tissue dehiscence.

6. Current Challenges and Future Directions

Reconstruction of the oral and maxillofacial region is a challenging procedure since it contains several delicate parts (such as maxilla, orbits and the nasal area etc.) with extreme importance in terms of esthetic and functional ability of the patients. Accurate reconstruction surgeries along with minimization of the operation time is of crucial importance to surgeons for improving treatment outcomes.

Nowadays, more than 50% of the clinical trials of 3D printed medical devices are related to the oral and maxillofacial surgery field and most often concern anatomical models for preoperative planning and guides for aiding surgery [67,68]. In the recent years, the 3D printing technology had undergone many adjustments, improvements, enabling an accurate and durable patient-specific model’s creation for complex individualized construct with high fitting properties. These changes lead to the printing of a custom-made patient reconstruction implant where the field of oral and maxillofacial surgery is leading the way in using such devices for clinical use. Various studies have showed the utility of using AM processes as an effective solution for both fabricating PSIs that fit precisely the specific anatomical defects and for pre-operative surgical simulation and planning. As seen also among our clinical examples, the AM technology is applied for printing non-biological components that are used as PSI, intra-operative surgical guides and for pre-operative planning. Indeed, these applications are to be the main indications for using the AM technology in the OMF field.
AM processes are growing and have positively influenced the medical sector by producing biological and non-biological components [69,70]. Recently, humans and animal studies showed some promising results in using bio-printing technology and opened a new avenue for alternative and innovative therapeutic methods for craniofacial defects [71]. Briefly, the bio-printing technology is defined as a single approach combining a set of techniques incorporating cells, biologically active compounds (e.g., growth factors and extracellular matrix components) within or onto a printed substrate. Different material delivery methods and technologies have since been used, including contact bio-printing (e.g., dip pen lithography, microextrusion, and soft lithography) [72,73]; contactless bio-printing (e.g., laser-based forward transfer) [74] and inkjet deposition [75] and other methods. Despite different limitations and obstacles of bio-printing technology (mainly related to scaffold material and scaffold survival), the fabrication of 3D printed scaffolds seem to be a promising alternative approach for bone tissue repair in craniofacial defects [71]. Moreover, the authors believe that once the bio-printing approach is applied successfully for bone tissue repair it can then be extended for soft tissue regeneration and will change, totally, the current management of reconstructive medicine in general, and maxillofacial surgery in particular.

In terms of accurate reconstructive surgery; the accuracy of AM products is still considered to be the main challenge when such objects are printed, knowing that surfaces in contact with a bone at the surgical site need to fit closely to ensure new bone growth and such inaccuracy of printed guides and plates may lead to critical complications. Based on our experience, some printed components are not completely accurate and further minimal adjustment should be performed, intra-operatively, to fit the accurate patient anatomy. This was the intra-operative complication that we needed to deal with. Indeed, most systems used to fabricate biomedical models provide satisfactory accuracy. However, one should take into consideration that the shape, dimensions and anatomic details of prototypes may be affected by errors at any stage of the process, such as CT image acquisition, image manipulation with CAD software, or fabrication and finishing [22,76,77]. Therefore, some parameters should be carefully analyzed to ensure accuracy including: slice thickness when the CAD model is re-sliced, diameter and angle of the laser beam, properties of the used powder particles, and direction of fabrication [77,78]. The authors argue that, to overcome this limitation, work is still needed towards increasing higher-resolution printing, but without sacrificing the strength, handling properties and shape of the final implant.

The non-technology related challenges should not be underestimated, for instance, with one of the limitations being the type of the material to be used. There are very few sets of material available for printing, which present a major setback. Most of the materials used are thermoplastic, while other companies use metal, glass, carbon fibers materials. For instance, when 3D printing bone tissue using SLA only photopolymers could be used, since binder fitting for materials are not suitable in the sintering process.

Staff education is also a main challenge, and developed skills are needed in the manual stages in producing the 3D printed model, and thus staff education is also a major concern in 3D printing process. Most of the PSI products in the present clinical use, as well as in our case series, are produced by titanium material using the SLS technique. For many years, metallic implants have been the most preferred alloplastic material in PSI manufacturing due to their favorable mechanical strength and excellent friction-resistance [79–81]. However, different limitations of metal materials are reported including hypersensitivity reactions, osteolysis initiation, MRI incompatibility and the mismatching between the elastic modulus of the metal products and that of normal human bone tissues which may lead to a stress-shielding effect and prosthetic loosening. To overcome this array of limitations and others, a new alloplastic material, PEEK, has emerged and have been considered as promising material for the PSI manufacturing. Briefly, PEEK is a semicrystalline linear polycyclic aromatic thermoplastic belonging to a family of linear aromatic polymers containing ether and ketone linkages [44]. PEEK was first developed in 1978 [79] and has since been used in a wide range of applications owing to its excellent combination of high-temperature performance, chemical resistance, fatigue resistance,
lightweight, high yield strength, stiffness, and durability [44]. Various studies conducted with PEEK in reconstruction of complex maxillofacial defects and calvarial defects have shown excellent postoperative esthetic and functional results without any complications [80–82]. Although a small number of PSI were performed in the our department using the PEEK material, the authors believe that this material may be very useful for reconstruction of OMF defects, especially, at the non-sensitive sites that do not tolerate a directly applied pressure/load.

In regard of the post-operative complications; one case out of the 16 cases treated at our department showed postoperative loss of the PSI. In this case, extensive edema developed combined with exposure of the PSI and acute infection development. Infection development is well documented in the literature when using PSI devices. In such cases, the results may be catastrophic and may lead ultimately to free flap use in the best scenario. The authors speculate that this complication may be developed due to different causes including patient susceptibility, infection of the surgical wound itself that lead to the PSI exposure, the loss of sufficient soft tissue coverage due to large oncologic resection, stress shielding that leads to loose hardware, and the surface texture of the implant itself. In addition, it should be mentioned that this PSI was implanted with trans-mucosal components in an area with poor keratinized tissue, which may lead to bacterial invasion around these components. Apart from the surgical skills themselves, different studies have aimed to assess the best surface texture modification, mechanically and chemically, for improving the osteointegration process of PSI and showed that surface modification, at the microscale and nanoscale, may support osteoblastic differentiation of normal human osteoblasts and enhance the osteointegration process [83]. In another case, postoperative improper contours of the nasal bridge were noted; this patient was lost subsequently to follow-up. We believe that this may have been due to the soft tissue scars that existed in the surgical site prior to the reconstruction surgery.

A major limitation of the additive manufacturing technologies in general is the fact that there is no consensus practice, nor standardized manufacturing guidelines. Therefore, the same 3D CAD file can be translated into a wide range of models while using different additive methods. All the additive techniques require calibration, processing, and formatting to achieve the required result. However, variability between the machines and the building process may produce a lack of appropriate strength and quality and, thus, a standardized quality measurements are required to ensure that parts built meet appropriate strength and reliability requirements.

Another limitation is supporting the components structures during the printing process. In AM manufacturing, components gain strength through the building process, thus a special concern must be given to the specific processing techniques to support the components structure, and to stand the material weight, external and internal forces from the printing process. Also, additive manufacturing techniques allow internal features to be built but, nonetheless, the geometrical shape and position must be verified [84].

In summary, the utilization of additive manufacturing in craniofacial surgery has significant promise and can extend way beyond the production of custom-fit implants used for large defects in the craniofacial complex resulting from trauma, oncologic surgery, congenital disease, as well as, for surgical stimulation, training and student/resident education. We hypothesize that these enormous potential applications may continue to grow with advancements in imaging, manufacturing, and the widespread availability of more sophisticated printers. In conclusion, from the clinical point of view, additive manufacturing provides a powerful method for fabricating 3D devices based on the CT of individual patients, enabling optimal results in suitable cases. However, more clinical trials with hundreds of cases are needed to build a clear optimal algorithm for the use of this approach.

Author Contributions: Y.G., A.N. and I.A.-E.-n. conceived and designed the experiments; A.N. and A.M. analyzed the data; I.A.-E.-n. and Y.G. analysis tools; Y.G. and A.N. wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
References

47. Available online: https://www.stratasysdirect.com/resources/choosing-the-right-material-for-your-application/ (accessed on 15 December 2020).
60. Schwartz, M.L.; Baredes, S.; Mignogna, F.V. Metastatic Disease To the Mandible. Laryngoscope 1988, 98, 270–273. [CrossRef]

74. Wu, P.K.; Ringesien, B.R. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). *Biofabrication* 2010, 2. [CrossRef]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Platform switch hybrid zygoma implants improve prosthetics and marginal bone protection after extra-sinus placement

Paweł Aleksandrowicz PhD, MD, DDS1 | Marta Kusa-Podkańska PhD, DDS1 | Witold Tomkiewicz MD2 | Lidia Kotuła PhD, MD2 | Jan Perek DDS2 | Joanna Wysokińska-Miszczuk PhD prof. DDS3

1Department of Periodontology, Medical University of Lublin, Lublin, Poland
2Department of Oral Surgery, Medical University of Warsaw, Warsaw, Poland
3Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland

Correspondence
Email: pawel.aleksandrowicz@umlub.pl

Abstract
Purpose: The aim of our study is clinical evaluation of Platform switch hybrid zygoma implants.

Materials and Methods: 117 zygomatic implants were followed up during this time. They included 55 Brånemark System zygoma implants, 38 Noris implants, and 24 novel iRES hybrid implants with platform switch.

Results: Bone quality and quantity are the prerequisite for successful implant treatment. Zygomatic implants are intended for patients with severely resorbed maxilla that cannot accommodate conventional implants without prior extensive bone grafting. Such regenerative procedures, like sinus lifts, prolong implant rehabilitation to several months (12–18). Furthermore, extensive grafts are less predictable showing varying degrees of graft resorption. Zygoma implants enable full, often immediate, reconstruction of the upper dental arch without the need for sinus lift treatment. The original zygoma protocol runs the implants through the sinus, requires general anesthesia, and positions the prosthetic platform of the implants on the palate, which makes prosthesis cumbersome. It also induces risk for post-op sinusitis. Extra-sinus approach with novel zygoma hybrid implants bypasses sinuses and positions the implant prosthetic platform on the crest allowing for same good prosthetics as on conventional dental implants. Furthermore, crestal threads and a platform-switch, of the novel zygoma design, increase implant anchorage and minimize marginal bone loss. The study presents evolution of zygoma implant rehabilitation protocol and zygoma implant design in our clinical practice over 15 years (2004-2019).

Conclusion: Extra-sinus zygomatic implant placement lowers the risk of post-op sinusitis and makes procedure possible to be done in local anesthesia.

KEYWORDS
edentulous atrophic maxilla, extra-sinus, platform switch, zygoma implants
1 INTRODUCTION

Loss of teeth leads to bone atrophy of the alveolar crest1-9 up to 1/3 of the original height within a few weeks after extraction. In the following years, atrophy progresses both from the crest and the sinus as a result of invasive proliferation of the maxillary sinus mucosa.10

The shape and structure of the zygomatic bones presented good anchorage alternative for longer implants (zygomatic implants). The efficacy of rehabilitation with zygomatic implants in maxilla is well documented.11-13 The limitations for the more comprehensive use of this method were invasive surgery under general anesthesia and prosthetic challenges with palatally positioned implant heads.

This study presents evolution of the protocol from intrasinus in general anesthesia into extra-sinus in local anesthesia14 and from palatal to crestal position of the implant heads for easier prosthetics. These changes required a new implant design: hybrid surface with crestal threads and platform-switch internal connection for better anchorage and marginal bone care.

Zygomatic implants first introduced by professor Per-Ingvar Brånemark in 19883 had machined surface and a lengths from 35 to 52.5 mm. The original protocol was two zygoma implants placed bilaterally (one on each side) and four regular implants in the anterior maxilla. Zygomatic implants ran through the lumen of the maxillary sinus, with the implant heads sticking out on the palatal side of the alveolar crest15 (Figure 1).

Zygoma implants reduced overall treatment (full upper arch rehabilitation) time and eliminated the need for bone grafting into maxillary sinus.16,17 The protocol was then modified to four zygomatic implants two on each side18 for patients who do not have enough bone in the front of maxilla.

The novel implant is a hybrid with rough (sand blasted and double attached) surface at the intra-zygomatic apex, machined surface at nthreaded central part (in contact with the maxillary sinus wall or cavity), and crestal threads to minimize periimplantitis risk there. Implants are 30 to 65 mm long and are adapted to the surgical protocol with Le Fort I simultaneous osteotomy. The Multi-Unit abutments have a “fleur-de-lys” emerging profile with platform-switch for both bone and soft tissues (Figure 4).

The hybrid implant’s surgical protocol involves the extra-sinus implant placement in the zygomatic bone body. The hybrid implant needs to be placed subcrestally in order to position the abutment on the top of the alveolar crest.

Fat pads soft tissue augmentation. In patients with a thin mucosal biotype we did soft tissue augmentation with pedunculated Bichata/Corpus adiposum buccae/fat pads (Figure 5) to avoid mucosal recession around the abutment.

2 ANESTHESIA

The extra-sinus zygoma implants were done in local anesthesia both intra-oral and extra-oral, percutaneously in the zygomatic bone area to detach the periosteum for subsequent preparation of the mucoperiosteal flap as well as detachment of the muscle m. zygomaticus major et minor attachment.

We also performed the procedure under general anesthesia at the patient’s request.
FIGURE 1 Evolution of zygoma implants and surgical protocol

FIGURE 3 Zygomatic hybrid implant with "platform-switch" prosthetic connection
After a thorough physical examination, we qualify the patient for surgery according to the ASA scale. Due to the extent of the procedure and its duration, we use general anesthesia in a complex manner—intravenously and intratracheally. We collect a patient’s consent each time after routine preanesthetic testing and risk assessment. We place the patient in a prone position—with the option of using the Trendelenburg position. Then we use standard vital functions monitoring, that is, automatic periodic RR measurement, ECG recording from four precordial leads, pulse, and arterial blood saturation recording. We perform venipuncture with a 1.4 mm Venflon cannula and intravenous induction: Fentanyl 0.002 mg/kg + Norcuron 0.07 mg/kg + Thiopental 3.45 mg/kg—using passive oxygenation with 100% oxygen at the same time. Switching to active oxygenation—after muscle relaxation—we perform atraumatic tracheal intubation through the nose—a 7 mm diameter profiled pulmonary silicone tube with a low-pressure sealing cuff. After establishing the artificial respiration and starting ventilation in CMV mode with 100% oxygen, we change the breathing mixture to 67% nitrous oxide and 33% oxygen using a standard anesthesia fan—for example, Fabius-Draeger with full control of ventilation parameters. We use Fentanyl—0.0005 mg/kg/h to carry out anesthesia, Norcuron 0.01 mg/kg/h for relaxation and isotonic fluids/PWE/2.5 mL/kg/h. After the procedure, there is a transition to 100% oxygen and spontaneous breathing. Then, after achieving full contact and recovery of the patient’s muscular strength, we carry out extubation. After the procedure, we apply postoperative analgesia with an automatic syringe Fentanyl 0.0006 mg/kg/h for 24 hours with a positive result according to the subjective pain scale.

3 | MATERIALS AND METHODS

The study involved 29 women and 20 men aged 33 to 81 who were treated at the Department of Periodontology of the Medical University in Lublin. Patients were qualified for surgery by one doctor after ENT consultation. Among the patients 16 were treated for hypertension and six were smokers.

Each patient had an OPG and CBCT scans done for optimal diagnostics. The first patient in the study group received zygomatic implants in 2004 and the last patient in 2019. The cumulative follow up was 180 months.

The study protocol was positively evaluated by the local Bioethics Committees at the Medical University of Lublin on day January 31, 2019 (number resolution KE-0254/43/2019).

TABLE 1	Position of the implant in relation to the maxillary sinus					
Position of the implant (1—in the sinus lumen; 2—extra-sinus)	**A (Group: zygomatic implants)**	**B (Group: Noris implants)**	**C (Group: hybrid implants)**			
	N	**%**	**N**	**%**	**N**	**%**
1	40	72.73	1	2.63	0	0.00
2	15	27.27	37	97.37	24	100.00

Note: “1”—N = 41 (35.04%); “2”—N = 76 (64.96%).

FIGURE 4 Two types of zygomatic implants classic left—(Noris Medical) and right—hybrid with platform-switch (iRES)

FIGURE 5 Augmentation of soft tissues with fat pads Corpus adiposum buccae
RESULTS

Three types of zygomatic implants were used. Total 117 implants. Zygomatic implants (a), with a fully sandblasted and acid-etched surface, accounted for 47% (n = 55). The group (B) of implants were smooth with rough threaded apex—32% (n = 38).

Hybrid implants (C), with rough threaded apex and machined (nonthreaded) body and crestal threads accounted for 21% (n = 24).

General anesthesia was done to patients who received an intrasinus implant—35.04%. All extra-sinus procedures were performed under local anesthesia—64.96% (Table 1).

The crestal position of the prosthetic abutments was achieved in 71.79% (Table 2).

The implants used in the study were from 30 to 50 mm long. The most commonly implanted zygomatic implants were 45 mm—32.48% (Table 3).

During follow-up visits, periodontal examination with a calibrated plastic tube, periimplantitis was found in around 3% of classic zygomatic implants (Table 4) and maxillary sinusitis was below 6% (Table 5). The immediate loading was applied in 22 patients. Zygomatic implants in remaining 27 patients were loaded within 3-6 months after surgery.

In the study group, about six implants (11%) Brånemark System and six Noris implants (16%) were exposed. There was no mucosal recession around the prosthetic abutments of hybrid implants.

Table 2
Position of the implant head/prosthetic abutment: on the crest or palatally

<table>
<thead>
<tr>
<th>Placement of the implant (1—top of the crest; 2—slightly palatal)</th>
<th>A (Group: zygomatic implants)</th>
<th>B (Group: Noris implants)</th>
<th>C (Group: hybrid implants)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>41.82</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>58.18</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: "1"—N = 84 (71.79%); "2"—N = 33 (28.21%).

Table 3
Implant lengths

<table>
<thead>
<tr>
<th>Length of zygomatic implant</th>
<th>A (Group: Zygomatic implants)</th>
<th>B (Group: Noris implants)</th>
<th>C (Group: Hybrid implants)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>27.27</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>10.91</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>7</td>
<td>12.73</td>
<td>14</td>
</tr>
<tr>
<td>45</td>
<td>18</td>
<td>32.73</td>
<td>14</td>
</tr>
<tr>
<td>47.5</td>
<td>6</td>
<td>10.91</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td>5.45</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4
Periimplantitis in zygomatic implants

<table>
<thead>
<tr>
<th>Percentage of periimplantitis around zygoma</th>
<th>A (Group: zygomatic implants)</th>
<th>B (Group: Noris implants)</th>
<th>C (Group: hybrid implants)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>0</td>
<td>52</td>
<td>94.55</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5.45</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: "0"—N = 114 (97.44%); "1"—N = 3 (2.56%).

Table 5
Post-op sinusitis

<table>
<thead>
<tr>
<th>Percentage of sinusitis on zygomatic implants (0—no sinusitis; 1—sinusitis)</th>
<th>A (Group: zygomatic implants)</th>
<th>B (Group: Noris implants)</th>
<th>C (Group: hybrid implants)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>0</td>
<td>51</td>
<td>92.73</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7.27</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: "0"—N = 110 (94.02%); "1"—N = 7 (5.98%).
5 | DISCUSSION

The original Bränemark technique of placing zygomatic implants in patients with severely resorbed maxilla opened new opportunities for predictable and even immediate rehabilitation of such patients without grafting the sinus. With time, however, intra-sinus placement of completely threaded and rough implants, palatal location of implant heads and general anesthesia were the limiting factors, for making zygoma treatment more common, due to the risk of post-op sinusitis, implant failures, prosthetic challenges.

Therefore, extra-sinus placement of hybrid (rough/machined) surfaced implants with crestal threads and internal platform switch connection lowers the risk of sinusitis and implant failure. Furthermore, subcrestal placement and platform-switched abutments on the crest—make prosthetics more comfortable for the patient and predictable as with conventional dental implants.22

The novel implant design reduces gingival recession around prosthetic abutments due to platform-switch applied.23,24

Furthermore the results of our study indicate efficacy of immediate loading of extra-sinus zygomatic implants which is the major benefit for the patient and treating team.25 Prosthetic loading 3-6 months after surgery is also very popular among authors doing similar research. The overall failure rate of zygomatic implants in our study does not differ from the reported by other authors and amounts to 1.7%.26

According to our knowledge, no report on zygoma platform switch hybrid implants placed extra-sinus has been published yet and therefore our findings may be encouraging for other investigators to further examine and popularize this graft-less method of full and frequently immediate rehabilitation of highly compromised patients.

6 | CONCLUSION

Extra-sinus zygomatic implant placement lowers the risk of post-op sinusitis and makes procedure possible to be done in local anesthesia. The use of hybrid implants lowers the risk of periimplantitis, sinusitis and implant failure. Crestal threads and internal platform-switch connection enable subcrestal placement and on-crest emerging of prosthetic abutment hence making prosthetics as good as on conventional dental implants. Soft tissue augmentation with fat-pads can be made in patients with a thin soft tissue biotype to avoid gingival recession. The overall failure rate of zygomatic implants in our study does not differ from the reported by other authors and amounts to 1.7%.26

The use of zygomatic implants is often a rescue procedure after complications in patients who have previously received conventional implant treatment.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ORCID

Pawel Aleksandrowicz https://orcid.org/0000-0003-2380-6800

REFERENCES

19. Aleksandrowicz P, Wysokinska – Miszczuk J. Zygoma implants as a method of implantology treatment of difficult cases with considerable

Surface Treatment of Dental Implants
Comparison of Implant Stability Quotient of sand blasted large-grit acid etched (SLA) & biological calcium phosphate surface treated (RBM) dental implants using Resonance Frequency Analysis - A Parallel Arm Double Blinded Randomized Controlled Trial

ABSTRACT

Background: Sand blasted large-grit aluminum oxide acid etched (SLA) and biological calcium phosphate surface treated Resorbable Blast Medium (RBM) mechanism leads to wettability of surfaces of dental implants which helps in osseointegration. The present study was conducted to discern the Implant Stability Quotient (ISQ) of SLA and RBM chemically modified dental implants.

Materials & Methods: The present study was conducted on 34 patients (males- 16, females- 18) of age ranged 18-54 years. Dental implants (Tuff Noris Medical) treated with SLA (Group I) and RBM (Group II) were inserted in patients using standardized clinical protocols. Resonance Frequency Analysis (RFA) was done immediately after implant insertion, after 1 week, 2 weeks, 6 weeks, 8 weeks and 12 weeks to discern the ISQ and hence predict the implant stability.

Results: Age group 18-30 and 31-54 years had 17 patients each. There was no absolute reported case of peri-implantitis or dental implant failure. Maximum mean RFA value in Group I was 85.6 and minimum was 43.2. In group II, maximum mean RFA value was 87.4 and minimum 31.8.

Conclusion: There is fastest osseointegration in implants with RBM group than with SLE surfaces. ISQ was higher than 80 in both groups which indicate higher implant stability.

Clinical Significance: It can be observed that surface treatment of dental implants shows higher implant-bone osseointegration.

Key words: Dental implant, Osseointegration, Implant Stability Quotient.

Introduction

Dental implants are being used aggressively in world. Dental implants of numerous companies are available to us.1 The success of any dental implant is based on its ability to show osseointegration. Various factors are responsible for survival of dental implant. It is divided into host related factors and dental implant related.2 Host related factors include systemic conditions and local factors.3 Literature revealed that acid etched or sandblasted implant offer high osseointegration in comparison to machined implants. Dental implant related factors are considered more important before inserting dental implants. Chemical modified Sand blasted large-grit aluminum oxide acid etched (SLA) and biological calcium phosphate surface treated Resorbable Blast Medium (RBM) mechanism leads to wettability of surfaces of dental implants which helps in osseointegration.4,5 It has been seen that hydroxylation of oxide layer improves the wettability of titanium oxide surface and absorption of proteins on surface of dental implants by increasing interaction between water and implant surfaces.6

Resonance Frequency Analysis (RFA) is the method of checking the stability or osseointegration of dental implants. It is represented as Implant Stability Quotient (ISQ). RFA helps in judging the level of osseointegration after insertion of implant or during healing period. This guides dentist to place prosthetic part after obtaining high ISQ value.7 The method is done by sending magnetic pulses to a small metal rod temporarily attached to the implant. As the rod vibrates, the probe reads its resonance frequency and translates it into an ISQ value. SLA implants have similar microstructure and roughness surface.8 The present study was conducted in the department of Prosthodontics to determine the ISQ of SLA and RBM chemically modified dental implants.
Materials & Methods

The present study was conducted in the Mumbai, India (Aesthetic Smiles Dental Clinic). It comprised of a convenience sample of 34 patients (males- 16, females- 18) of age ranged 18-54 years who were a part of the regular pool of patients at the study setting.

All patients were informed regarding the study and written consent was obtained from all those recruited. This randomized controlled clinical trial was a parallel arm double blinded study, with the patient and the statistician unaware of the allotment.

The patients were allocated in the two arms of the trial with an allocation ratio of 1:1. Thus, each group comprised of 17 participants each who fulfilled the inclusion and exclusion criteria. Tuff Noris Dental implants (Noris Medical Pvt. Ltd) treated with SLA (Group I) and RBM (Group II) were inserted in patients using standardized clinical protocols. All implants were placed in the mandibular region (having D1/ D2 type of bone quality) to maintain uniformity.

Patients without systemic diseases and edentulous area in posterior mandible were included while patients with insufficient bone height, systemic diseases and pregnant women were excluded. In all patients, bone height was measured with intraoral radiographs and bone height above 8mm was considered. Patients suffering from Type II Diabetes Mellitus were not taken in the purview of the study. Patients with bone height < 8mm and those unwilling to give written informed consent were not considered in the study.

In all patients assessment was performed with clinical examination, intraoral radiographic examination and CT scan of the implant site.

In all patients, implants with 10 mm height and 4.20 mm width were inserted. The ISQ was measured by a single standardized calibrated machine (Mega ISQ Implant Stability System, Megagen, Korea). RFA was done immediately after implant insertion, after 1 week, 2 weeks, 6 weeks, 8 weeks and 12 weeks.

Each of the readings were verified three times and the mean value was recorded during each visit. Results thus obtained were subjected to statistical analysis using SPSS Software (Version 19.0, IBM USA) That distribution of the variables were normal, as discerned by the Shapiro Wilk's test.

Parametric test of independent unpaired Student t-test was used for intergroup comparison and Repeated Measures Analysis of variance (ANOVA) followed by post-hoc Bonferroni correction was performed to compare the groups over the scheduled study period intervals.

Descriptive statistics and Chi Square test was used for association. Alpha error was set at 5% which corresponded to a p-value of less than 0.05 yielding statistically significant results.

CONSORT Flow Diagram

[Flow diagram showing the study's enrollment, randomization, allocation, follow-up, and analysis stages, with details on inclusion and exclusion criteria and outcomes for each group.]
Results

Age group 18-30 years had 8 males and 7 females, 31-40 years had 6 males and 9 females and 41-54 years had 2 males and 2 females (Table I). The difference was non-significant (P> 0.05). The maximum mean RFA value in group I was 85.6 and minimum was 43.2. In group II, maximum mean RFA value was 87.4 and minimum 31.8. Graph I elucidates the RFA values of the two groups at the specified time intervals. Table II depicts the intergroup comparison between the intervention groups. There was a statistically significant difference between the RFA values recorded in the SLA and RBM groups in the first, sixth, eight and twelfth week.

Mauchly’s test of sphericity displayed a statistically significant result, pointing towards a jeopardized F-ratio value interpretation in both the groups. Hence, the Epsilon test statistic was performed to discern further departure from the degree of sphericity. Since epsilon was >0.75, the Huynh-Fieldt correction was applied. The multivariate statistic Wilks’ Lambda yielded a statistically significant result for both the groups. (Tables III and IV).

Pairwise comparisons were performed by the repeated measures ANOVA Bonferroni correction post-hoc test. The within group differences showed statistically significant results (P< 0.05) (Table V). Graph II shows that torque value in group I was 34.2 and in group II was 36.4. The difference was non-significant (P> 0.05).

Tables

Table I: Association between Age & gender distribution of participants.

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Males</th>
<th>Females</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>6</td>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>41-54</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Chi Square test. (p<0.05 indicates statistical significance)
Table II: Intergroup comparison of RFA values.

<table>
<thead>
<tr>
<th>Time duration</th>
<th>Resonance Frequency Analysis (RFA) value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group I (SLA)</td>
<td>Group II (RBM)</td>
</tr>
<tr>
<td>Immediate post-op (0 weeks)</td>
<td>43.2</td>
<td>31.8</td>
</tr>
<tr>
<td>One Week</td>
<td>50.4</td>
<td>51.5</td>
</tr>
<tr>
<td>Two Weeks</td>
<td>53.7</td>
<td>55.3</td>
</tr>
<tr>
<td>Six Weeks</td>
<td>46.5</td>
<td>54.6</td>
</tr>
<tr>
<td>Eight Weeks</td>
<td>77.1</td>
<td>81.5</td>
</tr>
<tr>
<td>Twelve Weeks</td>
<td>85.6</td>
<td>87.4</td>
</tr>
</tbody>
</table>

Unpaired Student t-Test. (p<0.05 indicates statistical significance)

Table III: Mauchly’s Test of Sphericity.

<table>
<thead>
<tr>
<th>Within subjects effect (Design Intercept)</th>
<th>Mauchly’s W</th>
<th>p-value</th>
<th>Epsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Group I (Time)</td>
<td>0.487</td>
<td>0.002*</td>
<td>0.663</td>
</tr>
<tr>
<td>Group II (Time)</td>
<td>0.412</td>
<td>0.001*</td>
<td>0.597</td>
</tr>
</tbody>
</table>

Indicates Statistical Significance (p<0.05)

Table IV: Multivariate Tests

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F- Value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I (Time) Wilks’ Lambda</td>
<td>0.471</td>
<td>23.612</td>
<td><0.001*</td>
</tr>
<tr>
<td>Group II (Time) Wilks’ Lambda</td>
<td>0.419</td>
<td>24.021</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

*Indicates Statistical Significance (p<0.05)
Table V: Pairwise Comparisons

<table>
<thead>
<tr>
<th></th>
<th>GROUP I (SLA)</th>
<th></th>
<th>GROUP II (RBM)</th>
<th></th>
<th>p-value</th>
<th></th>
<th>p-value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Difference</td>
<td>Mean Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate post-op (0 weeks)</td>
<td>-7.2</td>
<td>-19.7</td>
<td><0.001*</td>
<td>-10.5</td>
<td>-23.5</td>
<td><0.001*</td>
<td>-3.3</td>
<td>-22.8</td>
</tr>
<tr>
<td>1 Week</td>
<td>-3.3</td>
<td>-33.9</td>
<td>-22.8</td>
<td>12 Weeks</td>
<td>-42.4</td>
<td>-55.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Weeks</td>
<td>-19.7</td>
<td>-33.9</td>
<td>-23.5</td>
<td>2 Weeks</td>
<td>-35.9</td>
<td>12 Weeks</td>
<td>-26.2</td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>-10.5</td>
<td>-23.5</td>
<td>-33.9</td>
<td>6 Weeks</td>
<td>-26.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Weeks</td>
<td>-3.3</td>
<td>-23.5</td>
<td>-49.7</td>
<td>8 Weeks</td>
<td>-26.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Weeks</td>
<td>-7.2</td>
<td>-26.2</td>
<td>-55.6</td>
<td>12 Weeks</td>
<td>-32.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Implant Stability Quotient of sand blasted large-grit acid etched (SLA) & biological calcium phosphate surface treated (RBM) dental implants using Resonance Frequency Analysis - A Parallel Arm Double Blinded Randomized Controlled Trial
<table>
<thead>
<tr>
<th>8 Weeks</th>
<th>GROUP I (SLA)</th>
<th>GROUP II (RBM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate post-op (0 weeks)</td>
<td>33.9</td>
<td>49.7</td>
</tr>
<tr>
<td>2 Weeks</td>
<td>26.7</td>
<td>30.0</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>23.4</td>
<td>26.2</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>30.6</td>
<td>26.9</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>-8.5</td>
<td>-5.9</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>42.4</td>
<td>55.6</td>
</tr>
<tr>
<td>Immediate post-op (0 weeks)</td>
<td>33.9</td>
<td>49.7</td>
</tr>
<tr>
<td>2 Weeks</td>
<td>35.2</td>
<td>35.9</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>31.9</td>
<td>32.1</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>39.1</td>
<td>32.8</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>8.5</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Post-hoc Bonferroni correction based on estimated marginal means.
* Indicates Statistical Significance (p<0.05)
Comparison of Implant Stability Quotient of sand blasted large-grit acid etched (SLA) \& biological calcium phosphate surface treated (RBM) dental implants using Resonance Frequency Analysis - A Parallel Arm Double Blinded Randomized Controlled Trial

Graph I: Resonance Frequency Analysis in both groups

Graph II: Torque during implant placement in both groups
Discussion

The success of dental implant is affected by various factors. The general and oral health of the patient, presence of systemic diseases, diabetes mellitus, osteoporosis, bleeding disorders etc. determine the future outcome of dental implant therapy. The diameter, length, site and design of dental implant also affects the stability of dental implant. The quality of bone affects the osseointegration process. Implant placed at D1 and D2 bones are more likely to show better osseointegration as compared to D3 and D4 bone.

In present study we compared ISQ of two similar design implants but treated with Sand blasted large-grit aluminum oxide acid etched (SLA) and biological calcium phosphate surface treated Resorbable Blast Medium (RBM) mechanism. Sim CP et al in their study evaluated the factors such as length of dental implant, quality of bone and instrument positioning on RFA. They suggested that ISQ is affected by bone quality and implant length. Implant placed in D1 and D2 bone is highly stable and shows better osseointegration.

Atieh et al revealed that RFA greatly determines the success and failure rate of dental implants. This technique may be used in healing period to assess the stability of dental implant. Bone deposition at the interface of implant- bone can be evaluated by increasing ISQ. In present study we found that in case of group I, minimum mean ISQ was 43.2 and maximum was 85.6. In case of group II, maximum value was 87.4 and minimum was 31.8. Our results are in agreement with the results of Han et al who found lowest ISQ as 55 and highest as 85. Ersanli et al observed highest ISQ value in type I and II bone than type III and IV bone.

It was observed that ISQ level at all weeks in both groups increased significantly with the progression of time. This may be due to difference in primary and secondary stability between weeks. At initial weeks, low ISQ may indicate loss of primary stability and increase in value indicates secondary stability. Simunek et al in their study concluded that during early healing of immediately loaded implant, there is minimum stability at 3rd and 4th weeks. Similarly, in our study, it was quite lower at both weeks as compared to subsequent weeks in both groups.

We observed that the ISQ value increased significantly from 4th week to 12th weeks and at the end both the groups. Gahona et al in their study evaluated ISQ of dental implants placed in maxilla and mandible. This comprised of 29 implants in mandibular arch and 31 in maxillary arch. It was seen that in implants with ISQ more than 60, there was successful osseointegration than those less than 60. Similarly, better osseointegration was observed in implants with torque insertion 35 or above.

We observed that torque value in group I was 34.2 and in group II was 36.4. Sarfaraz et al conducted a study on 37 patients. ISQ was measured in 3rd, 7th, 11th and 15th week. Author evaluated RFA, ISQ and insertion torque value. There was positive correlation between ISQ and ITV.

Bornstein et al in their study assessed the ISQ in 3 years prospective study. A comparison was done between acid-etched surface implant and chemically modified sandblasted implant. They suggested that hydrophilic implants have 2 times faster and better osseointegration. SLA implants had ability to be loaded in 3 weeks than 7-8 weeks. Rocuzzo et al in their study demonstrated that SLA implants can be best placed at 3rd week especially in maxillary posterior teeth region. Maxillary posterior region has type III or IV bone which shows higher implant failure rates. However, surfaced modified dental implants are effectively placed in this bone with higher survival rate. In present study, we used SLA and RBM chemically modified dental implants. Active surface treatment of dental implants makes it efficient for osseointegration even in bone with poor density.

Kokovic V et al in their study of immediate vs. early loading of SLA implants in the posterior mandibular region suggested that ISQ >70 is the indicator of higher implant stability. In both groups, we observed ISQ above 80 which is predictor of implant success. Park et al in their study on rabbit tibia found a correlation between ISQ and BIC after 4 weeks of healing. We observed that stability increased with time in both groups. Chambrone et al suggested that surface treated implants may more effectively inserted in poor quality bone and one can expect better results in such cases.

The shortcoming of the study is that small sample was utilized for the study. Long term follow up was not done in present study. Only maxillary posterior region was considered whereas in cases of other parts of jaw bones could have resulted in different findings. Other causes of implant failure such as poor oral hygiene, smoking etc might be the reason for poor osseointegration.

Conclusion

There is fastest osseointegration in implants with RBM surfaces than with SLA surfaces. ISQ was higher than 80 in both groups which indicate higher implant stability. However larger scale studies are required to substantiate the results obtained in this study.

Clinical Significance

Surface treatment of dental implants offers higher implant bone osseointegration.
References

Prevention of Peri-implantitis
SUMMARY

Purpose. Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypothesized causes of peri-implantitis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored by the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development.

Materials and methods: To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immersed in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR.

Results: Bacteria were detected inside all studied implants, with a median percentage of 9%.

Conclusions: The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.

Key words: implant-abutment connection, implant dentistry, bacterial leakage, peri-implantitis, bone resorption.

Introduction

Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80% (1-16) and implant placement requires an adequate quantity and quality of bone (17-25). However, peri-implantitis is a later complication of implant dentistry, that if untreated can lead to implant loss.

One of the hypothesized causes of peri-implantitis is the bacterial leakage at the level of implant-abutment interface. Bacterial leakage is favored by the presence of a micro gap at the implant-abutment interface level, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development (26, 27). Peri-implantitis is associated with a significantly higher inflammatory cell infiltration and bone loss (28).

Prevention of microbial leakage at the level of implant-abutment interface is the main aim for the construction of a new two-piece implant systems (TPISs) to avoid inflammation in peri-implant tissues.

The aim of our study is to value the microbial leakage at implant-abutment interface of a new TPIS (Noris Medical Dental Implants System, Israel).

Tuff two-piece implant system

Tuff implant (Noris Medical Dental Implants System, Israel) is a new TPIS, which, with its three thread zones, has been designed according to the anatomy of the bone structure. The lower V-shape thread zone is for self-tapping. The middle zone has a square thread design, used especially for compressing cancellous bone, and helping achieving BIC (Bone-Implant Contact). The micro thread design on the upper zone adds stability and reduces crestal bone loss. Mono implants are specifically indicated for replacing maxillary lateral incisors and mandibular central and lateral incisors. They are cleared for immediate, non-occlusal provisionalization in single-tooth restorations. Multiple unit restorations should be splinted together and may be used immediately, when clinically appropriate.

The Noris Medical Dental TPIS includes different types and sizes of dental implants made of medical grade Titanium Alloy and undergo a unique surface treatment.
Noris Medical TPIS are used for rehabilitating completely or partially edentulous patients. The rehabilitation on the implants includes a number of options: single crown, a number of connected crowns and partial or full dentures that are connected to Noris Medical TPIS using abutments. Quantity and quality of bone that are suitable for performing implants are an essential condition. This data is gathered during the planning stage by making appropriate radiographs (panoramic and computer tomography) of the implantation site. Anatomic areas near the implantation site such as: blood vessels, nerves, maxillary sinus and nasal cavity must be identified in order to prevent their damage. The performance of surgical procedures is subject to the patient’s systemic condition.

The Noris Medical Dental TPIS employs internal hex connection designed to provide assembly facility while minimizing micro movements of the implant/abutment connection. The implants material composition is: Ti 6Al 4V - ELI. The Noris Medical TPIS surface is RBM treated. RBM (Resorbable Blast Media) Surface Technology is a surface treatment processed by blasting the implant with a soluble calcium phosphate material, creating a macro surface roughness, using of biocompatible Calcium Phosphate blasting media. Calcium Phosphates are easily dissolved by gentle solvents like alcohol, leaving well textured surface completely free of contaminants.

Noris Medical Dental TPIS is intended to replace missing tooth/teeth in either jaw for supporting prosthetic devices that may aid in restoring the patient’s chewing function. The procedure can be accomplished in a one-stage or two-stage surgical operation. All implants are appropriate for immediate loading when good primary stability is achieved and with appropriate occlusal loading.

Materials and methods

Implant preparation

In order to size up the ability of the implant to isolate the heart of the device from the external environment, we evaluated the passage of modified E. coli across the joint of the implant. The peculiarity of these bacteria is that they contain synthetic DNA target sequences in their plasmid. In detail, the plasmid contains two sequence specific for two bacterial species (P. gingivalis and T. forsythia) and two genes for antibiotic selection (Kanamycin and Ampicillin).

Bacteria were cultured in lysogeny broth (LB) containing both Kanamycin and Ampicillin (at a final concentration of 50µg/ml) at 37°C for 12-18h in a shaking incubator. Four Tuff implants (Noris Medical®, Israel) were used in this study (Figure 1). Few microliters of LB with antibiotics were put inside the implants. The implants and the abutment are screwed with a torque of 35 Ncm. Few microliters of this culture were used to “contaminate” fresh LB with antibiotics contained in a microcentrifuge tube together with the implant. Tubes were then let at 37°C for 48h in a heater, in order to allow bacterial growth and their hypothetical passage within the implant. Inside the implant, instead, we just put LB and antibiotics without bacteria.

To be sure that there were no contaminations, a negative control containing only LB and antibiotics, was prepared.

Forty-eight hours later, implants were opened and samples were collected by dipping a paper probe in both the sites containing LB (external and internal to the implant) for each implant, and in the negative control too.

DNA extraction

Once collected, paper probe were put on a new microcentrifuge tube and processed for bacterial DNA extraction, by using the GenEluteTM Bacterial Genomic DNA Kit (Sigma-Aldrich, St. Louis, MO, USA), following the manufacturing procedures. Briefly, samples were incubated with lysozyme and, subsequently with proteinase K to isolate DNA. Once extracted, DNA was purified by spin-column method.

Real-time polymerase chain reaction

Bacterial quantification was performed by Real-Time Polymerase Chain Reaction using the absolute quantification with the standard curve method. Primers and probes oligonucleotides for P. gingivalis and T. forsythia were designed basing on 16S rRNA gene sequences of the Human Oral Microbiome Database (HOMD 16S rRNA Ref-Seq Version 10.1). For the quantitative analysis, plasmid (Eurofin MWG Operon, Ebersberg Germany) containing the specific DNA target sequence was employed as standard.

All reactions were performed in duplex, in 20ul final volumes, with 2X TaqMan Universal PCR master mix (Applied Biosystems, Foster City, CA, USA) and 50nM concentration of each primers and 200nM of the probes. Amplifications were carried out by using the ABI PRISM 7500 (Applied Bio systems, Foster City, CA, USA).

Statistical analysis

To evaluate if the difference in viability among outside and inside the implant was statistically significant, we applied Student’s t-test on average bacteria quantification at each time point.

Figure 1

Tuff Implant and abutment by Noris Medica
Results

Bacteria quantification is reported in Table 1. In all the tested implants, bacteria were found in the inner side, with a median percentage of 9%. The analysis revealed that in both cases (internally and externally), bacteria grew for the first 48 hours but subsequently they started to dye, probably as a consequence of nutrient consumption. Moreover, the difference between outer and inner bacteria concentration was statistically significant at each time point.

Table 1: Absolute quantification of P. gingivalis and T. forsythia, outside and inside the implant. Implant permeability is expressed as percent rate of the internal vs external bacteria quantity.

<table>
<thead>
<tr>
<th>Implant</th>
<th>Bacteria</th>
<th>Bacteria quantity</th>
<th>Implant</th>
<th>Bacteria</th>
<th>Bacteria quantity</th>
<th>Passage of bacteria from outside to inside the implant (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OUTSIDE</td>
<td>P. gingivalis</td>
<td>3518973</td>
<td>1 INSIDE</td>
<td>P. gingivalis</td>
<td>697785</td>
<td>19%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>3304664</td>
<td></td>
<td>T. forsythia</td>
<td>708424</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>2 OUTSIDE</td>
<td>P. gingivalis</td>
<td>7195087</td>
<td>2 INSIDE</td>
<td>P. gingivalis</td>
<td>396791</td>
<td>6%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>6789549</td>
<td></td>
<td>T. forsythia</td>
<td>400960</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>3 OUTSIDE</td>
<td>P. gingivalis</td>
<td>4579415</td>
<td>3 INSIDE</td>
<td>P. gingivalis</td>
<td>1082464</td>
<td>24%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>4582728</td>
<td></td>
<td>T. forsythia</td>
<td>1084939</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>4 OUTSIDE</td>
<td>P. gingivalis</td>
<td>2820289</td>
<td>4 INSIDE</td>
<td>P. gingivalis</td>
<td>89335</td>
<td>3%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>2720166</td>
<td></td>
<td>T. forsythia</td>
<td>98433</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>5 OUTSIDE</td>
<td>P. gingivalis</td>
<td>1351250</td>
<td>5 INSIDE</td>
<td>P. gingivalis</td>
<td>198973</td>
<td>15%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>1372971</td>
<td></td>
<td>T. forsythia</td>
<td>203651</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>6 OUTSIDE</td>
<td>P. gingivalis</td>
<td>2877517</td>
<td>6 INSIDE</td>
<td>P. gingivalis</td>
<td>88918</td>
<td>3%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>2452891</td>
<td></td>
<td>T. forsythia</td>
<td>100066</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>7 OUTSIDE</td>
<td>P. gingivalis</td>
<td>1124582</td>
<td>7 INSIDE</td>
<td>P. gingivalis</td>
<td>142005</td>
<td>13%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>1150407</td>
<td></td>
<td>T. forsythia</td>
<td>145277</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>8 OUTSIDE</td>
<td>P. gingivalis</td>
<td>1150527</td>
<td>8 INSIDE</td>
<td>P. gingivalis</td>
<td>101557</td>
<td>9%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>1112707</td>
<td></td>
<td>T. forsythia</td>
<td>128467</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>9 OUTSIDE</td>
<td>P. gingivalis</td>
<td>8131886</td>
<td>9 INSIDE</td>
<td>P. gingivalis</td>
<td>101248</td>
<td>1%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>7506339</td>
<td></td>
<td>T. forsythia</td>
<td>111292</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>10 OUTSIDE</td>
<td>P. gingivalis</td>
<td>2836594</td>
<td>10 INSIDE</td>
<td>P. gingivalis</td>
<td>243945</td>
<td>9%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>2614350</td>
<td></td>
<td>T. forsythia</td>
<td>252896</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>11 OUTSIDE</td>
<td>P. gingivalis</td>
<td>1792653</td>
<td>11 INSIDE</td>
<td>P. gingivalis</td>
<td>100353</td>
<td>6%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>1700109</td>
<td></td>
<td>T. forsythia</td>
<td>101758</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>12 OUTSIDE</td>
<td>P. gingivalis</td>
<td>1310796</td>
<td>12 INSIDE</td>
<td>P. gingivalis</td>
<td>110644</td>
<td>8%</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>1173590</td>
<td></td>
<td>T. forsythia</td>
<td>112948</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Negative Control OUTSIDE</td>
<td>P. gingivalis</td>
<td>0</td>
<td>Negative Control INSIDE</td>
<td>P. gingivalis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>0</td>
<td></td>
<td>T. forsythia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media Outside</th>
<th>Media Inside</th>
<th>PorG</th>
<th>3229381</th>
<th>PorG</th>
<th>Media Inside</th>
<th>279502</th>
<th>9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TanF</td>
<td>3040039</td>
<td>TanF</td>
<td>Media Inside</td>
<td>287426</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Bacterial leakage at implant-abutment connection is the main cause of peri-implantitis. The current TPISs cannot completely prevent microleakage and consequent bacterial colonization of the inner part of the implants. Although efforts have been made to reduce this TPISs limitation, several investigations have shown that bacterial oral leakage along the implantabutment interface may constitute a potential risk of inflammation of the supporting tissues, compromising the long-term success of the treatment with TPISs. A diversity of data regarding the leakage and consequent bacterial penetration along the gaps and cavities into the TPISs, as a consequence of poor adaptation of components, has been reported in some in vitro studies (26-37).

Other studies demonstrated microbial penetration of the TPISs micro gap of fixtures with an external hex design (29, 30). Some studies (31, 32) have investigated bacterial leakage of TPISs in order to find an efficient bacterial seal system. With the TPISs, the abutment is retained in the fixture with mechanical methods, favoring an inflammatory process in peri-implant tissues. Microbial colonization of the TPISs may have consequences as bone resorption. Some in vitro studies has demonstrated the passage of fluid into and out of TPISs. Our results are better to those reported in the English literature (33, 34). Aloise et al. found that the frequency of bacterial leakage was 20% of the TPIS of Bicon® and Ankylos® systems (27). Implant internal contamination evidently shows that the presence of gap in TPISs may represent a bacterial passage from the external medium (35). TPISs do not prevent microbiological leakage in the inner part of implant-abutment interface (36). In any case, the peri-implantitis is associated with gram-negative bacteria similar to those that cause periodontal disease (37). The peri-implantitis, such as periodontal disease, is the result of the bacterial insult and the subsequent host response, in fact some studies has shown that bacterial species of periodontal disease are very similar to those that cause peri-implantitis (38). Blocking the passage of bacteria, in a TPIS is essential to prevent periimplantitis, in fact the presence of a cavity near to bone may influence in the development of peri-implant inflammation and bone resorption. An intense inflammatory cell infiltrate may be the cause of a significant bone resorption in a TPIS, on the contrary one-piece implants showed a minimal inflammation and bone loss around peri-implant tissues. Some studies demonstrated that the presence of a micro gap significantly influence hard and soft tissues around an implant, so few literature data are available about the differences in the microbial penetration in TPISs with different connection designs. The design of the implant-abutment junction may have an impact on the amount of bacterial penetration in the internal part of dental implants of a TPIS system.

Conclusions

The reported results are similar to previous work. Noris Medical Dental Implants System showed bacterial leakage better respect others implant systems (9 versus 20% of Bicon® and Ankylos® systems). In spite of the limits of our study, none TPIS has been demonstrated to perfectly close the gap between implant and abutment.

References

eds. Perspectives on Clinical Dentistry. 2011;287-300.

Correspondence to:

Prof. Francesco Carinci, MD
Department of Morphology,
Surgery and Experimental Medicine
University of Ferrara
Via Luigi Borsari 46
44121 Ferrara, Italy

Phone: +39.0532.455874
Fax: +39.0532.455876
E-mail: crc@unife.it
A Comparative Evaluation of Height of Interdental Papilla around Noris Tuff TT and Nobel Active Dental Implants placed in Maxillary Anterior Region

Nitin Ahuja¹, Ritika Arora², Vaibhav Kumar³, Johnson Raja James⁴

¹MDS - Oral and Maxillofacial Surgery, Private practitioner and Implantologist, Dentistry Dental Clinic, Oberoi splendour D-205, Andheri East, JVLR, Mumbai - 400060
²Professor and Head, Department of Periodontics, Vadik Dental College and Research Centre, Daman,
³Lecturer, Department of Public Health Dentistry, Terna Dental College, Navi Mumbai.
⁴MDS Periodontology, Professor & Vice Principal, Rajas Dental College & Hospital, 4/148, Shanthi Nagar, Palayamkottai, Tirunelveli - 627002

ABSTRACT

Background: Interdental papilla height is important as esthetic factor for dental implant success. The present study was conducted to compare the amount of soft tissues around Noris Tuff TT and Nobel Active dental implant systems.

Materials & Methods: The present study was conducted on 28 patients (males- 13, females- 15) who received 32 dental implants in maxillary anterior region. Group I patients received Nobel Active dental implants and Group II patients received Noris Tuff TT dental implants. In all patients, interdental papilla was evaluated using JEMT index. The amount of bone loss in both groups was evaluated using paired and unpaired t-test.

Results: The amount of bone loss around dental implants in both groups did not show significant difference (P> 0.05). There was nonsignificant correlation between bone loss and papilla index in both groups (P> 0.05) Conclusion: The amount of interdental bone loss and papilla profile in the maxillary anterior region around Noris Tuff TT when compared to that around Nobel Active dental implants was non-significant.

Clinical significance: The preservation of interdental papilla is of paramount importance for the successful dental implant therapy.

Key words: Bone loss, Noris Tuff TT implants, Nobel Active implants, Interdental papilla, JEMT index.

Introduction

Maxillary anterior region is common site for tooth loss. The causes may be trauma, cysts or tumors etc. The prime most reason to replace missing anterior teeth is esthetics and functions. Dental implants are considered options for replacing single tooth. This treatment modality has advantages over Fixed Partial Denture (FPD) or Removable Partial Denture (RPD). There is no need to prepare adjacent teeth as in cases of FPD. The clasps of RPD may lead to trauma to tooth as well as to soft tissues. Thus dental implants are useful in restoring function and esthetics.³

Studies have revealed high success rate of 95% over 10 years for dental implants. The process of osseointegration promotes union of dental implant with bone, ensuring better attachment and success rate. Apart from it, the soft tissues around dental implant play an important role in long term survival. Interdental papilla and labial gingiva add beauty to dental implants.²³

Factors such as periodontitis, over contoured restoration, flossing technique, improper alignment of prosthetic part of M dental implant and abnormal tooth morphology may affect interdental papilla. The level of bone around dental implant and adjacent teeth determines the future outcome of treatment. Therefore, the height of interdental papilla may be regarded as deciding parameter for successful implant therapy. Literature has shown that there is variation in height of interdental papilla on distal and mesial side of dental implant.⁴ The present study was conducted to compare the amount of soft tissues around Nobel Active and Noris Tuff TT dental implant system.
Materials & Methods

The present three years retrospective study was conducted in a Mumbai, India (Aesthetic Smiles Dental Clinic). EC approval was obtained from an Independent Review Board. A non-probability convenience sample comprising of 28 patients (Males- 13, Females- 15) who received 32 dental implants in the maxillary anterior region was fixes as the study sample. Inclusion criteria were patients with dental implant in maxillary anterior region in last three years, no systemic diseases, non-smokers, pocket depth <3mm and no bone loss. Patients with poor quality radiographs, uncooperative, pregnant women, patients with systemic diseases and on steroid therapy or those unwilling to give written informed consent were excluded from the study.

All the subjects recruited for the study were informed regarding the same and written consent was obtained. The patients were divided into 2 groups. Group I patients comprised of those who received Nobel Active dental implants (Nobel Biocare) and Group II patients received Noris Tuff TT dental implants (Noris Medical Pvt. Ltd.). The reason why these two implant systems were chosen in the purview of the study, among the pool of various other systems available can be attributed to the fact that these two systems have similar external geometry of thread design.

All the dental implant were inserted by same clinical team comprising of a faciomaxillary surgeon (NA) and periodontist (RA) following standardized operating surgical protocols. The prosthetic part was prepared by the same technician (R.R. Dental Lab).

Following the dental implant insertion, Intraoral Periapical Radiographs (IOPAR) were taken with the same calibrated machine following the paralleling technique using size 2 x-ray films. The patients were recalled periodically in accordance to the Merin's classification of patient scheduling and radiographs of the same site were obtained after 2 years.

Upper edge of the implant shoulder in initial radiograph and the distance between abutment and implant was regarded as reference line. In initial radiographs, the distance from the contact point of the implant and bone to the reference line and the distance from the CEJ of the adjacent tooth to the contact point of the crestal bone and tooth were measured. In follow up radiographs, the distance from the contact point of the crestal bone and implant to the reference line and the distance from the CEJ of the adjacent tooth to the contact point of the crestal bone and tooth were measured. The distance from the contact point of the implant restoration and the adjacent tooth to the crestal bone was also calculated.

JEMT index (Figure 1) was used to measure presence of interdental papilla between implant and adjacent teeth in follow up period (after 2 years). All the measurements were performed by two independent clinicians following astute training of the examiners (RA and VK). Cohen’s Kappa (unweighted) statistic yielded a strong level of agreement (0.90) between the two examiners. The mean of their values was considered to further overcome interobserver bias. A digital Vernier caliper was used for measurements in mm.

Papilla index (PI) grading was used. Score 0 depicted no papilla in the interproximal space, score 1 was presence of less than 50% of the papilla height, score 2 had presence of at least 50% of the papilla height but not all the interproximal space, score 3 showed the papilla completely fills the interproximal space and is coordinated by the adjacent papilla with a favorable gingival contour and score 4 had the hyperplastic papillae that covers too much of the single implant restoration and/or the adjacent tooth, with unfavorable gingival contour was used.

The data was compiled in Microsoft Excel spreadsheet and subjected to necessary statistical analysis. The normality of the data was assessed using Shapiro-Wilk test and the data was found amenable to parametric inferential statistics. Intergroup comparisons were analyzed using the paired t-test and the intragroup comparisons were judged using the Student’s t-test. The level of significance (α) was seta-priori, at 5% (p< 0.05) with the power of the study(1 – β) at 80%.

Results

The results are elaborated in Table I and II. Group I, mean distances from the implant shoulder to the crestal bone on mesial side was 1.22 mm initially and 1.8 mm after 2 years. On distal side, it was 0.82 initially and 2.3 mm after 2 years. In group II, mean distances from the implant shoulder to the crestal bone on mesial side was 1.8 mm initially and 3.1 mm after 2 years. On distal side, it was 1.6 mm initially and 2.2 mm after 2 years. The difference was significantly (P< 0.05) on distal side in group I. The mean distance between the CEJ of the adjacent tooth and the crestal bone in group I initially on mesial side was 2 mm and 2.6 mm after 2 years, on distal side it was 2.2 mm initially and 2.4 mm after 2 years.

In group II, it was 2.1 mm initially and 2.5 mm after 2 years on mesial side. It was 2.5 mm initially and 2.7 mm after 2 years on distal side. The difference was non-significant (P>0.05) (Graph I). Mean bone loss adjacent to implant shoulder in group I was 1.34 mm and 0.72 mm in group II. The difference was non-significant (P>0.05).
GRADE "0"
No papille is present
GRADE "1"
Less than half of the height of the papille is present
GRADE "2"
Half or more of the height of the papille is present
GRADE "3"
The papille fills up the entire proximal space
GRADE "4"
The papillae are hyperplastic

Table I: Intragroup comparison of mean distances (mm) from the implant shoulder to the crestal bone

<table>
<thead>
<tr>
<th></th>
<th>Group I (Nobel Active)</th>
<th>Group II (Noris Tuff)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesial</td>
<td>1.22</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Distal</td>
<td>0.82</td>
<td>2.3</td>
<td>0.01*</td>
</tr>
</tbody>
</table>

Group I initial
Group II initial
Group I after 2 yrs
Group II after 2 yrs

Table II: Intergroup comparison of mean distances (mm) from the implant shoulder to the crestal bone

<table>
<thead>
<tr>
<th></th>
<th>Interdental papilla height (mm)</th>
<th>Group I (Nobel Active)</th>
<th>Group II (Noris Tuff)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial IOPAR</td>
<td>Mesial</td>
<td>1.22</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Distal</td>
<td>0.82</td>
<td>1.6</td>
<td>0.3</td>
</tr>
<tr>
<td>2 Years</td>
<td>Mesial</td>
<td>1.8</td>
<td>3.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Distal</td>
<td>2.3</td>
<td>2.2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Unpaired Student t-test.

Graph I: Comparison of the mean distance between the CEJ of the adjacent tooth and the crestal bone
Success rate. Many studies have been conducted to evaluate the parameters affecting bone loss around dental implants. The presence of sufficient bone height in the region favors dental implant therapy. Moreover, maxillary anterior region shows type I bone which is suitable for dental implants. Dental implants in maxillary anterior region are less subjected to occlusal forces. The height of interdental papilla also determines the dental implant success rate. Many studies have been conducted which evaluate factors affecting bone loss around dental implants. Very few studies have been performed so far which shows importance of dental papilla as key factor in deciding outcome of dental implants. Considering this, the present study was conducted to compare the amount of soft tissues around Nobel Active and Noris Tuff TT dental implant systems.

Chang M et al in their study revealed that interdental papilla formation is greatly depends on distance between dental implant and natural teeth and anatomy of adjacent teeth. Grunder U suggested that bone level around dental implant determines the presence of interdental papilla between implant and natural teeth. In present study we included 28 patients of both genders having 32 dental implants. All were the cases of maxillary anterior region. We used Nobel Active dental implants in group I and Noris Tuff TT dental implants in group II. We observed that the mean distances from the implant shoulder to thecrestal bone was 1.22 mm initially which become 1.8 mm after 2 years in group I on mesial side. It was 0.82 initially and 2.3 mm after 2 years on distal side. Similarly, the mean distance from the implant shoulder to thecrestal bone was 1.8 mm initially and 3.1 mm after 2 years on mesial side and 1.6 mm initially and 2.2 mm after 2 years on distal side. The amount of bone loss in both groups was <5mm, only half of cases showed interdental papilla.

Ozdemir et al in their study included 33 immediate dental implants and adjacent implants. The level of interdental papilla height was measured using Pink esthetic score at 1 week, 1 month and 4 months. Authors concluded that immediate dental implants and loading are effective in maintaining soft tissue health such as interdental papilla.

Similarly, the study by Mankoo et al in their 2-7 years follow up study on 10 dental implants placed in esthetic zone suggested the role of labial tissue thickness and tissue biotype in dental implant therapy in maxillary anterior region.

Choquet et al in their study assessed the level of interdental papilla around single maxillary anterior dental implant both clinically as well as radiographically. Authors found that in cases where there was >6 mm distance between alveolar crest and contact point, the interdental papilla was seen in all cases whereas when it was <5mm, only half of cases showed interdental papilla.

The limitation of the study was small sample size. Only Noble Active and Noris Tuff TT types of dental implants were included. Further studies are warranted to elucidate fortified results in different study settings and populations. Keeping the congruency of the gingival biotype and studies depicting survival analysis data could prove to be a cornerstone in research within this paradigm and vista.

Conclusion

Authors found relation between presence of papilla and the distance of the contact point of the implant restoration and the adjacent tooth to the crestal bone. The amount of bone loss in both groups was not significant.

Clinical Significance

The preservation of interdental papilla is of paramount importance for predictable results and successful dental implant therapy.
References

A NEW SPIRAL DENTAL IMPLANT: A TOOL FOR ORAL REHABILITATION OF DIFFICULT CASES

I. BALAN1, R. CALCATERA2, D. LAURITANO3, E. GRECCHI4, F. CARINCI5

1 Private practice in Israel
2 Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, Rome, Italy
3 Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
4 Department of Oral Surgery, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlínico, Milan, Italy
5 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy

SUMMARY

Spiral dental implant (SDI) is an implant with a conical internal helix that confers the characteristic of self-drilling, self-tapping, and self-bone condensing. These proprieties offer better control during insertion of SDI giving a high primary stabilization, even in poor quality bone. A shorter diameter of SDI results in reduced drilling during insertion and consequently less trauma and minimal bone loss. To address the research purpose, the investigators designed a retrospective cohort study. The study population was composed of 25 patients, 11 males and 14 females that have been treated by Dr. Balan with 187 SDI positioned in mandible and into maxilla bone. The implants were placed during the years 2013 to 2014 in Dr. Balan clinic. All patients underwent the same surgical protocol. Several variables are investigated: demographic (age and gender), anatomic (upper/lower jaws and tooth site), implant (length and diameter and type) variables, edentulism (partial or total), and comorbid status of health (i.e.: hypothyroidism, parodontitis, hypertension, diabetes, presence of cancer, heart disease, hepatitis and rheumatologic disease). Pearson Chi-Square test was used to investigate variables and p < 0.05 was considered statistically significant. Statistically it has been shown that females have a higher possibility of unsuccessful respect of male, with a “p value” of 0.014.

Another important impact factor for success of implant insertion has been represented by concomitants pathologies: cancer represents the most negative high factor risk with a percentage of unsuccessful of 50%, followed by heart disease (15%), and diabetes (3.7%). SDIs are reliable tools for difficult cases of oral rehabilitation. They have a higher success and survival rate, which means stable results over time. No differences were detected among SDI lengths, implant/crown ratio. In addition, the insertion of SDIs in banked bone can be performed without adverse effects. Finally, flapless and computer tomography-planned surgery does not significantly increase the clinical outcome of SDIs in complex rehabilitation. Cancer represents the most important variable to consider when a patient wants to do oral rehabilitation because of its high risk of unsuccessful.

Key words: implant dentistry, spiral implants, bone, helix design, survival rate.

Introduction

Spiral dental implant (SDI) is a conical internal helix implant with a variable thread design that confers the characteristic of self-drilling, self-tapping, and self-bone condensing (1-3). These proprieties offer better control during insertion of SDI giving a high primary stabilization, even in poor quality bone. A shorter diameter of SDI results in reduced drilling during insertion and consequently less trauma and minimal bone loss. Position and orientation of SDI can be changed even after initial insertion without trauma to the alveolar bone tissues. These properties of SDI are particularly useful in case of bone atrophy, in low bone density, or in freshly extracted sites and thin sinus floors elevation without prior bone augmentation. Implant placement requires an adequate quantity and quality of bone (4-12). The selfdrilling capability of the SDI allows it to be inserted into sites with reduced depth. This characteristic of SDI is very useful for implant surgeon when implant must be inserted in proximity to anatomic structures such as the mandibular nerve canal or the maxillary sinus and nose cavity.

Some studies have proven the SDIs to be highly successful (13-16). However, to achieve this predictable success, a specific protocol for SDI should be followed. Researches have challenged several aspects of this specific protocol, and their investigations found the relative importance of helix design on osseointegration. Therefore, the identification of guidelines for the long-term success (i.e., total implants still in place at the end of the follow-up, good clinical, radiologic, and aesthetic outcome) has been to achieve good clinical outcome (17-20).
Many variables may influence the clinical outcome of SDI: surgery protocol, bone quality and quantity, helix design, and occlusion (21-25). Surgery-related factors comprise several variables such as an excess surgical trauma like flap, bone thermal injury, and irrigation. Bone quality and quantity are the most important host-related factors, while helix design, surface coating, and length are the strongest implant-related factors. Finally prosthetic restoration and occlusion-related factors may affect the clinical outcome.

Surgery-related factors

Flapless implant surgery is easy to perform since the helix design allows a simpler penetration into bone of SDI. With this blind procedure, the surgeon may run the risk to deviate SDI. The use of radiographic images is necessary to evaluate the surgical site underneath the soft tissue, and computer tomography images provide an accurate 3D picture of the surgical field. In addition, several Authors have advocated the use of drill guides for SDI insertion to link the virtual preoperative treatment plan based on the computer tomography images to the situation encountered during surgery (18, 19).

Bone quality and quantity

Bone quality and quantity, a host-related factor, is believed to be the strongest predictor of outcome in SDIs. Some studies have reported that most of the immediately loaded implants are placed in anatomic sites with bone quality D1 or D2 (16, 17, 26). No differences were detected between implants inserted in native and grafted bone. Some papers on clinical outcome of SDIs reported no statistical difference with regard to anatomic sites (mandible vs maxilla or tooth site) or surgery-related factors (i.e., surgeon, flapless surgery, computed tomography- planned, and post extraction sites).

Prosthetic-related variables

Several prosthetic-related variables were reported: loading time, situation of antagonist arch, and implant/crown ratio; this variable was statistically significant with a worse outcome for full arches loading few implants. Several reports have appeared in the last decade and good medium-term success rate of SDIs has been reported. The effectiveness of these types of SDI was demonstrated in several clinical situations (25).

However, because there are no reports about survival rate of SDI we therefore decide to perform a retrospective study on 187 SDIs.

Materials and methods

Study design/sample

To address the research purpose, the investigators designed a retrospective cohort study. The study population was composed of 25 patients, 11 males and 14 females that have been treated by Dr. Balan with 187 SDI positioned in mandible and into maxilla bone. The implants were placed during the years 2013 to 2014 in Dr. Balan clinic.

Subjects were screened according to the following inclusion criteria: controlled oral hygiene, the absence of any lesions in the oral cavity; in addition, the patients had to agree to participate in a post-operative check-up program.

The exclusion criteria were as follows: bruxism, smoking more than 20 cigarettes day and consumption of more than 2 glass of wine per day, localized radiation therapy of the oral cavity, blood and kidney diseases.

Pre-operative medication protocol

An antimicrobial prophylaxis was administered with 500 mg amoxycillin twice daily for 5 days One hour prior to dental surgery: 1g Augmentin (amoxicillin and clavulanate potassium) for patients who are allergic to penicillin - 600 mg Dalacin (clindamycin); 12 mg dexamethasone (not for diabetics); 20 mg Vaben (oxazepam); 100 mg Otarex (hydroxyzine hydrochloride); 2 tab Narocin 275 mg (naproxen); 1 cap Losec 20 mg (omeprazole); Probiotic.

Implant surgery

All patients underwent the same surgical protocol. Local anesthesia was induced by infiltration with articaine/epinephrine and post-surgical analgesic treatment was performed with 100 mg nimesulid twice daily for 3 days. Oral hygiene instructions were provided.

After a crestal incision a mucoperiosteal flap was elevated. Implants were inserted according to the procedures recommended. The implant platform was positioned at the alveolar crest level. Sutures were removed 14 days after surgery.

The provisional prosthesis is delivered on the same day of the operation and the final restoration was usually delivered within an additional 6 months. All patients were included in a strict hygiene recall.

Post-operative medication protocol

Antibiotics: Moxypen (amoxicillin) 500 mg 3 times a day/Augmentin 500/875 3 or 2 times a day/Dalacin 300 mg 3 times a day; for 7 days; 0.12% Chlorhexidine rinse for a month; 400 mg Ibuprofen every 4 hours, if needed; Dexamethasone, starting with 12 mg daily and reducing 2 mg each following day, botox (dilute according to manufacturer’s instructions, divide to 6 doses, inject to the masseter muscle in 3 points along the muscle, in each side).
Variables

Several variables are investigated: demographic (age and gender), anatomic (upper/lower jaws and tooth site), implant (length and diameter and type) variables, edentulism (partial or total), comorbid status of health (i.e.: hypothyroidism, parodontitis, hypertension, diabetes, presence of cancer, heart disease, hepatitis and rheumatologic disease).

Primary and secondary predictors of clinical outcome were used. The primary predictor is the presence/absence of the implant at the end of the observation period. It is defined as survival rate (i.e., SVR) that is the total number of implants still in place at the end of the follow-up period. The second predictor of outcome was the periimplant bone resorption. It is defined as implant success rate (SCR and it is evaluated according to the absence of persisting peri-implant bone resorption greater than 1.5 mm during the first year of loading and 0.2 mm per year during the following years (24).

Data collection methods and summary of operative methods

Before surgery, radiographic examinations were done with the use of orthopantomography (Figure 1).

In each patient, peri-implant crestal bone levels were evaluated by the calibrated examination of orthopantomography X-rays. Measurements were recorded after surgery (Figure 2) and at the end of the follow-up period (Figure 3). The measurements were carried out mesially and distally to each implant, calculating the distance between the implant' platform and the most coronal point of contact between the bone and the implant. The bone level recorded just after the surgical insertion of the implant was the reference point for the following measurements. The measurement was rounded off to the nearest 0.1 mm. A peak Scale Loupe with a magnifying factor of seven times and a scale graduated in 0.1 mm was used.

The difference between the implant-abutment junction and the bone crestal level was defined as the Implant Abutment Junction (IAJ) and calculated at the time of operation and during follow-up. The delta IAJ is the difference between the IAJ at the last check-up and the IAJ recorded just after the operation. Delta IAJ medians were stratified according to the variables of interest.

Peri-implant probing was not performed because controversy still exists regarding the correlation between probing depth and implant success rates (24, 25).

Data analysis

Pearson Chi-Square test was used to investigate variables and \(p < 0.05 \) was considered statistically significant.

Results

Twenty-five patients, 11 males and 14 females, treated by Dr. Balan with 187 SDI with a medium age of 58.4 years have the inclusion criteria and were enrolled in the present study. Informed written consent approved by the local Ethics Committee was obtained from patients to use their data for research purposes. The mean post loading follow-up was 8.7 ± 2.5 months. One hundred and ten implants (58.8%) were inserted in females, 77 (41.2%) in males. A total of 187 implants was inserted into 25 patients: 73 (39.0%) into the mandible and 114 (61%) into the maxilla.
There were 187 NORIS Medical Ltd dental Implant system (Israel):166 Tuff 21 Cortical. They were inserted because of atrophy of the bone in 97 cases (51.9%), periodontitis in 78 cases (41.7 %) and 12 (6.4%) in post extraction for caries.

Implant length and diameter ranged from 8 mm to 16 mm (standard was 11.5 mm) and from 3.75 mm to 6.0 mm, (standard was considered 3.75 mm) respectively. There were 40 standard length fixtures (i.e. 11.5 mm), 33 short and 114 long implants. There were 79 standard diameter fixtures (i.e. 3.75 mm) and 108 wide implants. Implants were inserted to replace 51 incisors, 26 cuspids, 49 premolars and 61 molars.

One hundred and fifty-three implants were inserted in totally edentulous patients, and 34 in partially edentulous patients.

Considering the presence of comorbidity, the most percentage of SDI were inserted in healthy patients (58.8%), while 27 (14.4%) implants were inserted in diabetic patients, 19 (10.2%) in patients with heart disease, 21 (11.2 %) in hypothyroid, and finally 10 (5.3%) in patients with cancer. Seventy-three (39%) implants were inserted in mandibular bone. One hundred and fourteen (61%) implants were inserted in maxilla bone. No implant was lost in the post-operative period. Every variable has been studied with Pearson Chi-Square test, to investigate which of these can compromise the successful rate of the insertion of SDI.

Statistically it has been shown that females have a higher possibility of unsuccessful respect of males, with a “p value” of 0.014. Another important impact factor for success of implant insertion has been represented by concomitants pathologies: cancer represents the most negative high factor risk with a percentage of unsuccessful of 50%, followed by heart disease (15%), and diabetes (3.7%).

Discussion

Primary implant stability and bone density are variables considered essential to achieve predictable osseointegration and long-term clinical survival of SDIs. For osseointegration of SDI, not only adequate bone quantity is required, but adequate density is also needed. The initial bone density not only provides mechanical immobilization of the SDI during healing, but also permits distribution and transmission of stresses from the prosthesis to the implant bone interface. The mechanical distribution of stress occurs primarily where bone is in contact with the SDI (16-18, 26).

One study demonstrated that when maximum stress concentration occurs in cortical bone, it is located in the area of contact with the thread of helix, and when the maximum stress concentration occurs in trabecular bone, it occurs around the apex of the helix (25).

Besides the success rate of SDIs is above 80%, peri-implantitis may occur in oral rehabilitations of difficult cases also. Peri-implantitis and periodontal disease spring from bacterial infection that activates a cytokines cascade leading to inflammation and bone loss (27-31).

In addiction, the patient-related susceptibility is a critical factor for disease onset. So, every factor favouring oral biofilm formation (poor oral hygiene), host defence capability (smoking habit, excessive alcohol consumption, genetic traits, history of periodontitis, oral mucosal lesions and prosthetics), might favour developing of peri implants and periodontal disease in SDIs, which diagnosis and treatment require dentist’s engagement (32-39).

Conclusion

In conclusion, SDIs are reliable tools for difficult cases of oral rehabilitation. They have a higher success and survival rate, which means stable results over time. No differences were detected among SDI lengths, implant/crown ratio.

In addition, the insertion of SDIs in banked bone can be performed without adverse effects. Finally, flapless and computer tomography-planned surgery does not significantly increase the clinical outcome of SDIs in complex rehabilitation. Considering risks factors above all health status and female sex seems to be mandatory for the success of SDI. Nowadays we should keep in touch that cancer represents the most important variable to consider when patients wants to do oral rehabilitation because of its high risk of unsuccessful.

References

Correspondence to:
Francesco Carinci
Department of Morphology,
Surgery and Experimental Medicine,
University of Ferrara
Via Luigi Borsari 46
Ferrara, Italy

Phone: +39.0532.455874
E-mail: crc@unife.it
We Can Make You Smile

NORIS Medical®
Dental Implant Solutions

norismedical.com