A New Surgical And Technical Approach In Zygomatic Implantology

F. GRECCHI¹, A.E. BIANCHI², S. SIERVO², E. GRECCHI¹, D. LAURITANO³, F. CARINCI⁴

¹Department of Maxillofacial Surgery, Galeazzi Hospital, Milan, Italy
² Department of Maxillofacial Surgery, "Istituto Stomatologico Italiano", Milan, Italy
³ Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
⁴ Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy

SUMMARY

Purpose: Different surgical approaches for zygomatic implantology using new designed implants are reported. Material and methods. The surgical technique is described and two cases reported. The zygomatic fixture has a complete extrasinus path in order to preserve the sinus membrane and to avoid any post-surgical sinus sequelae. Results. The surgical procedure allows an optimal position of the implant and consequently an ideal emergence of the fixture on the alveolar crest.

Conclusion: The surgical procedures and the zygomatic implant design reduce remarkably the serious post-operative sequelae due to the intrasinus path of the zygomatic fixtures.

Key words: zygomatic implantology, atrophic maxilla, immediate loading.

Introduction

During the last two decades, the placement of zygomatic implants, usually inserted through the maxillary sinus and apically stabilized in the zygomatic bone, has proven to be an effective option in the management of severe atrophic edentulous maxilla (1-4). Zygomatic implants are an useful option in atrophic jaws to avoid bone grafting plus standard implants insertion (5-52, 112-114).

The installation of zygomatic implants was firstly introduced by Brånemark et al. in 1998 in order to rehabilitate the masticatory and the aesthetic functions in severe atrophied maxilla caused by trauma, congenital conditions, tumour resections or increased sinus pneumatisation (53). Given the high success rate reported in literature for ZIs placement, this surgical technique can be considered as a valid alternative to bone augmentation and invasive surgery to restore function and improve the aesthetic result for patients with atrophic edentulous maxilla (2, 53- 57). Zygomatic implants, in fact, were subsequently used to rehabilitate severe atrophic upper jaws, classes V and VI, according to Cawood and Howell classification of edentulous jaws (58). At the beginning 1970, Linkow presented a surgical technique to rehabilitate extremely atrophic maxillae placing smooth implant (diameter 2 mm) apically inserted in the zygomatic bone (59).

New procedures and improvements have been developed since the description of the classical surgical technique in 1998 (53). Stella and Warner introduced the “sinus slot approach” in 2000, a zygomatic implantation method that minimize the presence of the zygomatic implant through the sinus, improving the emergence orientation of the implant, because it allows a more vertical angle of the fixtures than the original technique (60, 115). In 2013 Aparicio (61) et al. proposed a surgical technique based on the relationship between the zygomatic/alveolar crest complex and the various anatomy guided zygomatic implants pathways (ZAGA) (61).

Extremely absolute contraindications to the placement of zygomatic implants are acute sinus infections, maxillary or zygomatic bone pathologies and underlying uncontrolled or malignant systemic disorders. Relative contraindications are chronic infections of the maxillary sinus and smoking more than 20 cigarettes a day. Zygomatic implants placement in patients that use bisphosphonates is to this day debated. A maxillary sinus with any pathology should preferably be treated before or during surgical procedures (56).

The surgical intervention for zygomatic implant placement, with currently systematic devices offered on the market, results to be remarkably challenging and arduous and it frequently requires the use of general anesthesia. The post surgical sequelae described in the literature (61, 62, 116), such as rhinosinusitis, sinusitis, paresthesia, oroantral fistula, mucositis and perimplant soft tissue dehiscences, represent to this day a critical and significant limit to the implementation of the zygomatic implant surgery and the extensive regular practice of this procedure. The surgical
Materials and methods

The surgical technique used for zygomatic implants placement considers the use of implant with a specific design: Noris Medical Zygomatic implant has an unthreaded long body ending with a particularly aggressive thread at the apical part of the implant. The zygomatic implant is anchored in the zygomatic bone with the conical threaded apical segment; the resulting torque, by virtue of the apically threaded 12.5 millimetres, is extremely high. The implant is placed following the procedures of the extramaxillary protocol, which is a successive modification of the traditional Brånemark technique. In the extramaxillary approach a bypass of the maxillary sinus is made in order to prevent any damage to the sinus membrane and to avoid post surgical sinus sequelae. The implant prosthetic platform is therefore shifted buccally to a more appropriate position of the emergence close to the alveolar crest, a less bulky restoration and a better designed prosthesis. A special design of the drills have been made in order to allow the clinician to create a clean and safe tunnel preparation with minimal risk of damaging the membrane. An angled Multi-Unit abutment from 17° to 60° will then provide the correction of the emerging angle needed.

The operative technique we are now describing has the purpose to decrease and avoid post surgical possible complications derived from the sinus path of the zygomatic implant, as rhinitis and sinusitis, difficult and uncomfortable prosthetic restorations consequent to the palatal emergence of the abutments, and extensive problems with the intraoral perimplant soft tissue, as mucositis.

For the surgical approach a slightly incision is made in the maxillary alveolar crest extending from the first molar right region to the left one, paying attention not to injure the emergence of the descending palatine artery that, due to anatomical evolution of the atrophic maxilla, may arise in the alveolar crest.

Two posterior vestibular releasing incisions are made bilaterally considering the emergence of Stensen’s duct not to produce any accidental injuries, and a median releasing incision is made below the nasal spine.

Afterward a mucoperiosteal flap is raised simultaneously bilaterally along the whole incision or in two separate stages, according to the different anesthetic approach chosen for the intervention (general anesthesia or deep narcosis).

The mucoperiosteal flap reflection can be performed in two different ways depending on the surgical procedure implicated: the placement of only two zygomatic implants, or a quad-zygomatic surgery.

In the surgical case of two zygomatic implants placement, the mucoperiosteal flap is raised in order to expose the alveolar crest, the anteriolateral wall of the maxillary sinus, and the origin of the zygomatic arch where the masseter muscle tendon is inserted; the mucoperiosteal flap of the paranasal region is raised medially to the emergence of the infraorbital nerve.

The infraorbital foramen is the posterior limit of the mucoperiosteal reflection and of the visible bone and it is exceeded only in case of special needs to reach the zygomatic notch and totally expose the outer surface of the malar region, area dedicated to the implant site preparation. In fact, normally the perception of the bone cutter spill is acquired from the fingertips through the thickness of the overlying skin on the malar bone.

In case of quad-zygoma surgery, the bone region exposed after the mucoperiosteal flap reflection is wider, and it reaches the lower orbital rim.

The infraorbital foramen is localized and isolated both medially and distally, the emergence of the infraorbital nerve is meticulously ensured and protected during the entire surgical phases as the anterior zygomatic implant should be positioned at a safe distance from the aforementioned nerve.

The implant site preparation is performed with drills and burs mounted on a contra-angled handpiece. This expedient allows the posterior zygomatic implant positioning distal to the region of the maxillary second premolar easier. The end point of the anterior zygomatic implant will be close to the maxillary canine region bilaterally on the lowermost point of the alveolar crest.

After the mucoperiosteal flap is reflected, the surgical procedure minimum provides one or two corticotomies of the anteriolateral wall of the sinus performed with a round diamond bur (4mm in diameter) in order to determine one or two marking points (Figures 1, 2).

The holes made through the bone with the round diamond bur, in order to set the correct place of the zygomatic implant, are then connected to the intraoral emergence of the zygomatic implant earlier determined using zygomatic burs for groove preparation. These burs have a not working tip and a diamond cylindric body of three different levels of grit (fine, medium, coarse) (Figure 3).

The conical not working tip of the bur is inserted in the infraorbital foramen. The infraorbital foramen is the posterior limit of the paranasal region is raised medially to the emergence of the infraorbital nerve.

The conical not working tip of the bur is inserted in the marking point which provides a valid point of support and fulcrum for the subsequent bone preparation in the premolar and in the distal canine region, passing from the coarser to the finer bur.

The bur will be further deepen with a tangential movement of go and come for two-thirds of its diameter.

This procedure correctly performed respects the integrity of the Schneiderian membrane.

In order not to lacerate the sinus mucosa during following actions, a gentle inward shift of the Small Schneiderian membrane with a sinus periosteal should be carried out (Figure 4).
Small accidental injuries and lacerations of the sinus mucosa in the region of the zygomatic recess are easily fixed and not significant in terms of sinusitis sequelae; on the contrary, those produced in the region of the alveolar crest, where the end of the zygomatic implant should be, must be solved also using resorbable membranes.

The zygomatic bone preparation, where the apex of the zygomatic implant will be placed and anchored, is performed with a sequence of drills with the final conical cutting tip 2.5 cm long and 2-3.2mm in diameter in apex (Figure 5).

The smooth body of the drill has the same diameter of the antrostomy previously carried out. This slot in the sinus wall reproduces a true apical surgical preparation guide for the drills and it prevents dangerous and unsafe errors due to the excessive movements caused by the length of the drills used. It avoids the deviation of the drill from the planned direction.

Figure 1
The 4 mm diameter round bur used to determine the initial marking point.

Figure 3
The anterolateral sinus wall is prepared with the coarse zygomatic bur: the not working tip is inserted in the marking point and the working diamond cylindrical body prepares the bone.

Figure 2
The marking point performed on the sinus wall.

Figure 4
The sinus slot is performed and a gentle inward shift of the Schneiderian membrane is made.

Figure 5
A sequence of drills with the final cutting tip 2.5 cm long and 2-3.2, mm in diameter in apex is used for the zygomatic bone preparation.
The first drill must totally penetrate the zygomatic bone and come out through the external cortical layer. It’s important to fell with a finger through the skin of the periorbital region the cutting apex of the drill coming out from the zygomatic arch, laterally on the malar bone.

The preparation of the zygomatic implant site continues with the sequence of drills.

A depth indicator is then used to decide the correct length of the zygomatic fixture. The tip of the depth gauge is located on the external cortical zygomatic bone.

The diameter of the final hole on the zygomatic arch carried out by the drills is approximately 2.2 mm in diameter, much lower than the final circumferential size of the implant (3.2 mm). This difference avoids the risk of emergence of the end of the zygoma fixture from the bone during malar screwing when searching primary stability.

Generally we firstly perform the preparation of the anterior zygomatic implant, which is the more complicated and dangerous one, and subsequently we complete the preparation of the distal fixture tilting the drills in relation to the residual bone available, the most posterior and vertical as possible, so that the apexes are convergent, but do not interfere between them.

The implant is positioned with an extraoral screwdriver, if the anatomy is favourable, or with the usual operations of screwing that we use in all types of endosseous implants (Figure 6).

The emergence of the fixture must be in the optimal site from a prosthetic point of view, on the alveolar crest. The angled abutment position is checked in order to obtain an ideal emergence of the prosthetic abutment, and it’s screwed.

The coverage of the region with Bichat fat pad or resorbable membranes is performed in those cases that present particular conditions of vestibular maxillary concavity and therefore it is not usually and frequently carried out (Figure 7).

The resorbable suture completes the surgical intervention.

Clinical case 1

A 59-year-old Caucasian male patient with partial edentulous maxilla required a fixed prosthetic rehabilitation with zygomatic implants. He had no history of pathologies that could contraindicate surgery.

Panoramic radiography and CT were examined to evaluate the bone volume of the maxilla and of the zygomas and to eliminate the risk of undiagnosed pathologies.

The surgery procedures were performed under general anesthesia with endotracheal intubation reinforced with local infiltration of anesthesia with vasoconstrictor. Three upper incisors were extracted and two zygomatic implants and four normal implants were placed (Figure 8).

Clinical case 2

A 51-year-old Caucasian female patient with total edentulous maxilla needed prosthetic rehabilitation with zygomatic implants. He had no history of pathologies that could contraindicate surgery.

Pre op. radiographic examination, included orthopantomograms and computed tomography, were evaluated. An advanced vertical and horizontal bone loss of the alveolar ridge was revealed and there was no evidence of other pathologies that could exclude surgery.

The operation was executed under general anesthesia with nasotracheal intubation and local injection of anesthesia with vasoconstrictor. Four zygomatic implants were placed (Figure 9).
Discussion

A functional occlusal prosthetic rehabilitation of severely resorbed edentulous maxilla with conventional implant-supported dental bridges constitutes a difficult therapeutic challenge. Tooth extractions, use of dentures and the presence of extensive maxillary sinus often result in a lack of bone volume. Therefore there are many obstacles and limitations to the final result that can be achieved using bone-anchored fixed prostheses in all those patients with advanced atrophic maxilla. Recurrently the residual alveolar bone is too small for placement and osseointegration of dental implants (63). For more than three decades, bone grafting prior to, or simultaneously with, implant placement, has become routine in oral rehabilitation. Several bone augmentation techniques (maxillary sinus floor augmentation, onlay bone grafting...) have been described in literature with the common goal of increasing the volume of the residual bone in order to place implants and rehabilitate the masticatory function and speech with fixed prosthesis (54, 64-67). However all bone grafting procedures are resource demanding and require long treatment and healing periods, such as Le Fort I osteotomies or revascularized flaps. High risk for morbidity is present because of harvesting of bone grafts, and the failure rates are more than in nongrafted situations (68). Many efforts have been made to pursue alternatives to major bone grafting procedures and to achieve a valid osseointegrated implant anchorage exploiting the residual native bone. The need of bone grafting may be replaced and bypassed by the use of remaining existing anchorage bone sites in the maxillary tuberosities, pterygoid plates or zygomatic bone. Some Authors suggested the pterigomaxillary suture as an alternative location for implant placement, but the risk of vascular damage is very high because of the path of the descending maxillary artery (69-71). Other Authors proposed the use of tilted implants and/or short implants to use the residual bone and to avoid any sinus lift procedures (64).

Brånemark et al. firstly introduced the use of zygomatic bone for anchorage of zygomatic fixtures (53). This surgical technique was presented for rehabilitating patients with extremely resorbed maxilla and wide-ranging maxillary defects due to tumor resections, congenital defects, traumatic events. The use of zygomatic implants reduced the time of treatment and the number of surgical operations. The surgical approach consists of a similar Le Fort I vestibular incision between the first molar region with vertical releasing incisions. Subsequently a mucoperiosteal flap is raised in order to expose the hard palate and the alveolar crest, the zygomatic complex, the lateral wall of the maxillary sinus, the infraorbital nerve. A bone window is opened at the uppermost lateral aspect of the maxillary sinus wall and the sinus membrane is prudently reflected in the sinus cavity. The site for the implant placement in the maxillary sinus and on the palatal side of the alveolar crest is then prepared with a series of drills. Unfortunately this surgical procedure often causes problems related to the intrasinus path of the zygomatic implant and patient discomfort and difficulties with hygiene procedures and speech due to the bulky dental bridge at the palatal aspect.

Since Brånemark, new procedures and improvements have been made.

In 2000 Stella and Warner (60) introduced “the sinus slot approach”. This operative technique allows a more vertical placement of the zygomatic implant and consequently a better buccal emergence of the implant. The crestal incision is less extensive than that of Brånemark: it’s made from one tuberosity to the contralateral one, vertical releasing incisions are made. The raising of the mucoperiosteal flap allows a good visibility of the region and the palatal mucosa is reflected only to expose the alveolar ridge. Two bur holes are made, the first on the superior extent of the contour of the zygomatic buttress, and the second one on the alveolar ridge. Two bur holes are made, the first on the superior extent of the contour of the zygomatic buttress, and the second one on the alveolar ridge. Afterward a slot connects the holes and it results in a small antrostomy in order to have a correct orientation of the drills used for zygomatic implants placement. The sinus mucosa is preserved and the implant can be directly seen during all the surgical procedures. A greater bone to implant contact is obtained. The presence of the zygomatic implant through the sinus is minimize and postoperative edema and ecchymosis are reduced. The patient discomfort decreases because of the improvements of the implant emergence, which results more buccally than the original technique.
Aparicio (61) et al. in 2013 proposed a more anatomically and more prosthetically driven approach called “the zygomatic anatomy guided approach” (ZAGA). This surgical technique focuses on interindividual anatomical differences between patients. No initial window or slot is needed to be prepared on the lateral wall of the maxillary sinus because the preparation of the zygomatic implant site is guided by the anatomy of the edentulous maxilla. The procedure, in order to determine the placement of the fixture, is different from the previously described techniques. Firstly, the correct emergence of the zygomatic implant on the alveolar ridge is established in order to obtain an optimal prosthetic outcome. Then, the apical entrance of the implant in the zygomatic bone is decided according to the number and to the length of implants required, and to the anatomy of the area. Thirdly, the implant pathway is identified after connecting the two points: the direction of the final preparation of the site is guided. The final path of the implant body may definitely depends on the anatomy of the patient, and it may vary from a totally intrasinus placement to a totally extrasinus one.

The surgical technique we have above described introduces new expedients and precautions in order to decrease and avoid post-surgical possible complications. The innovative design of the zygomatic implant is different from the first proposed and used by other Authors: the implant has an unthreaded long body ending with a particularly aggressive threaded apical segment. The risk of peri-implantitis is so decreased that is of paramount importance in two-stage implantology (13, 14, 16, 72-111, 117).

The zygomatic fixture has a complete extrasinus path in order to preserve the sinus membrane and to avoid any post-surgical sinus sequelae. The surgical procedure allows an optimal position of the implant and consequently an ideal emergence of the fixture on the alveolar crest. The correction of the emerging angle needed is provided thanks to angled Multi Unit Abutments from 17 to 60°.

Those developments and improvements both of the surgical procedures and the zygomatic implant design reduce the serious post-operative sequelae remarkably due to the intrasinus path of the zygomatic fixtures.

Acknowledgments

The Authors thank Dr. Balan Igal D.M.D (ISR) and Noris Medical.

References


